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Chapter 1

Data description

The field of statistics can be divided into two major branches: descriptive statistics and inference statistics.
In both branches, we work with a set of measurements, and we need to organize, summarize and describe
the data. Whether we are describing an observed population or using sampled data to draw an inference
from the sample to the population, an insightful description of the data is an important step in drawing
conclusions from it.
In this Chapter, we will review both graphical techniques and numerical descriptive techniques as two major
methods for describing a set of measurements.

1.1 Visualising distributions

We will first start by describing the variability present in a single quantitative variable, which pattern we
see is called the distribution of the variable. Three main aspects of the distribution can be described:

1. The location or centre of the variability

2. The spread of the variability

3. The shape of the variability

Once these patterns have been described, we can look for values that do not match this general description,
for example outliers are values that do not match the rest of the pattern or bimodal distributions where
there are two distributions of variability in our values.

1.1.1 Histogram

Histograms are appropriate for displaying frequency data for quantitative variables. A histogram displays
the distribution of the data (its shape) as it is an estimate of the probability distribution of a continuous
variable. The values need to be broken into a number of bins or classes. A histogram is obtained by drawing
rectangles whose bases are the bins intervals and whose heights are in the counts in each bin.
We examine the overall shape in the histograms, often to compare di↵erent populations or samples. It
actually helps to choose the appropriate measures to summarize the data (see following Sections). Common
shapes (distributions) include:

• Unimodal / Bimodal

• Uniform

• Symmetric / left or right skewed
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Figure 1.1: Some common shapes of distributions.

Exercise 1 Characterise the di↵erent shapes of distribution from Figure 1.1.
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Figure 1.2: SRBCT gene expression data. Frequency histogram of the expression values of one gene.

Exercise 2 The microarray study of Khan et al. 20011 measures the gene expression from 63 patients
a↵ected by Small Round Blue-Cell Tumors (SRBCT). The diagnostic for each of these patients is grouped into
four di↵erent categories: EWS (Ewing family of tumours, nEWS = 23), BL (Burkitt Lymphoma nBL = 8),
NB (Neuroblastoma, nNB = 12) and RMS (Rhabdomyosarcoma, nRMS = 20).
We focus on the expression of one gene, which is a G protein-coupled receptor kinase 6 (gene ID: 724932),
across the 63 samples. Discuss the distribution of the expression value of this gene displayed in Fig. 1.2.

Remark 1 The shape of the histogram can be strongly a↵ected by the number of bins used (argument breaks
in the hist() function, set to a default algorithm). One case where the bins are predetermined is with discrete
data (e.g. age of patients).

Remark 2 By default the R function hist() displays the frequency of the data (i.e. the counts in each bin),
but the relative frequency is also available. The relative frequency histogram has a total area of one, and
instead of using raw counts, represents the proportion of counts in each bin. For example Fig. 1.3 show the
frequency and the relative frequency histogram of the same data: the same shape is observed but the y-axis is
di↵erent.

1Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature
Medicine 7 6
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Figure 1.3: Frequency (a) and relative frequency (also called density) (a’) histograms for the same data.

1.1.2 Density plots

The histogram is an example of a plot that estimates the density of a distribution (although not smoothed
and highly dependent on the width of the bins). Kernel density estimators put a little lump (kernel of the
density estimate) centered on each data value and then add all their densities together to get the final curve
(Figure 1.4).

Expression values of gene ID  724932 

Fr
eq

ue
nc

y

0 0.5 1 1.5 2

0

5

10

15

20

(a)

Expression values of gene ID  724932

D
en

si
ty

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

(b)

Figure 1.4: SRBCT gene expression data. Density curve with dotplot (a) and histogram of counts (b) for
the expression values of one gene.
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Density plots are very useful to compare multiple distributions in a single plot (Fig. 1.4).
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Figure 1.5: SRBCT gene expression data. Density curves with respect to each tumour category for the
expression values of one gene.

Exercise 3 Comment on the density plots obtained in Figure 1.5.

1.2 Measures of central tendency and variability

Numerical descriptive measures enable statistical inference as graphical descriptive measures are inappropri-
ate for that purpose. Common numerical descriptive measures are measures of central tendency (describe
the center of the distribution of measurements) and measures of variabilities (how the measurements vary
about the center of the distributions).

Remark 3 There is a distinction between numerical descriptive measures for a population, called param-
eters and numerical descriptive measures for a sample, called statistics. In problems requiring statistical
inference, we will not be able to calculate values for various parameters, but we will be able to compute
corresponding statistics from the sample and use these quantities to estimate the corresponding population
parameters.
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1.2.1 Measures of central tendency

Definition 1 The mode of a set of measurements is defined to be the measurement that occurs most
often (with the highest frequency).

The mode can be applied to both qualitative and quantitative data. We can also encounter distribu-
tions with more than one measurement that occurs at the highest frequency (bimodal, trimodal ..).
Exercise 4 What is the mode of histogram from Figure 1.2?

Definition 2 The median of a set of measurements is defined to be the middle value when the mea-
surements are arranged from lowest to highest.

The median reflects the central value of the data. The median for an even number of measurements is the
average of the two middle values when the measurements are ordered from lowest to highest.

Definition 3 The arithmetic mean, or mean, is defined to be the sum of the measurements divided by
the total number of measurements.

Population mean and sample mean are di↵erent. The population mean (denoted by µ) is unknown,
while the sample mean (denoted by ȳ) is used to make inferences about the corresponding µ.
If we let y1, y2, . . . , yn denote the measurements observed in a sample size of size n (for example we record
the weight of n individuals), then the sample mean ȳ can be written as

ȳ =

P
i=n

i=1 yi

n
=

The sample mean ȳ is then used as an estimate of the mean value µ.

The mean is a useful measure of the central values of a set of measurements, but is subject to distortion due
to the presence of one or more extreme values called outliers. These outliers pull the mean in the direction
of the outliers, distorting the mean as a measure of a central value. The median is often used in place of the
mean when there are extreme values in the data set.

Exercise 5 Indicate the mean, median and mode on each distribution shape in Figure 1.6.
For each measure, indicate if: (a) there exists more than one of this measure for a set of measurements, (b)
it is influenced by extreme values, (c) it is applicable to qualitative or quantitative data.
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Figure 1.6: Relation between the mean, the median and the mode.

Remark 4 We are not restricted to using only one measure of central tendency. For some data sets, it will
be necessary to use more than one of these measures to provide an accurate descriptive summary of central
tendency for the data.

1.2.2 Measures of variability

Measures of variability are needed to determine how dispersed are the set of measurements around the
mean. For example we can obtain relative frequency histograms with the same mean but di↵erent relative
frequency histograms. For example figure 1.7 illustrates histograms with the same mean but a di↵erent
spread (variability) about the mean.

Percentiles and interquartile range. A first simple measure is the range (di↵erence between the largest
and the smallest measurements of the set), and the use of percentiles.

Definition 4 The p
th percentile of a set of n measurements arranged in order of magnitude is the value

that has at most p % of the measurements below it and at most (100 - p) % above it.
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Figure 1.7: Variability around the mean with frequency histograms.
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Figure 1.8: The 60th percentile of a set of measurements. The vertical red line indicates the 60th percentile.

Specific quartiles of interest are the 25th, 50th and 75th quartiles (called lower quartile, middle quartile
and the upper quartile).

Definition 5 The interquartile range (IQR) of a set of measurements is defined to be the di↵erence
between the upper and lower quartiles:
IQR = 75th quartile - 25th quartile

The IQR completely ignores the extremes in the data. It can be quite useful to compare the variabilities of
two or more sets of measurements, and is used to plot the boxplots (see following Section 1.4).
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Exercise 6 Similar to Figure 1.8, represent the lower, upper quartiles, median and IQR of a normal distri-
bution.

Exercise 7 For the gene ID 724932, we order the expression values by increasing order. Give the lower,
upper quartile, median and IQR.

1 2 3 4 5 6 7 8 9 10 11

0.1458 0.2052 0.2464 0.2613 0.2619 0.2788 0.2903 0.3067 0.3094 0.3114 0.3278

12 13 14 15 16 17 18 19 20 21 22

0.3417 0.3447 0.3737 0.3795 0.3866 0.4024 0.4088 0.4092 0.4115 0.4366 0.4401

23 24 25 26 27 28 29 30 31 32 33

0.4403 0.4453 0.4469 0.4485 0.4615 0.4735 0.4792 0.4814 0.4964 0.5141 0.5212

34 35 36 37 38 39 40 41 42 43 44

0.5323 0.5345 0.5474 0.5592 0.5770 0.5846 0.5885 0.5922 0.6019 0.6022 0.6032

45 46 47 48 49 50 51 52 53 54 55

0.6053 0.6108 0.6134 0.6731 0.6848 0.6996 0.7045 0.7054 0.7212 0.7255 0.7803

56 57 58 59 60 61 62 63

0.7974 0.8349 0.8415 0.8457 0.9782 1.1194 1.1367 1.6856

Variance.

Exercise 8 Suppose we have 5 measurements representing the percentage of registered voters in 5 cities:
y1 = 68, y2 = 67, y3 = 66, y4 = 63 and y5 = 61. Represent the data in a dot digram:

The sample mean is

ȳ =
68 + 67 + 66 + 63 + 61

5
= 65
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The deviations of the measurements are computed by y � ȳ.
What would ‘little variability’ mean in this example?

How can we measure the overall deviation?

The variance is useful not only to compare the variabilities of several sets of measurements, but also for
interpreting the variability of a single set of measurements.

Definition 6 The variance of a set of n measurements y1, y2 . . . , yn with mean ȳ is the sum of the
squared deviations divided by n� 1:

1

n� 1

nX

i=1

(yi � ȳ)2

Similarly to the sample and population means, the sample variance is denoted s2, and the corresponding
population variance is denoted �2.

Remark 5 Some statisticians define the sample variance to be
P

i
(y � ȳ)2/n. However, the use of (n� 1)

in the denominator makes this measure an unbiased estimator of the population variance �
2, which means

that for a very large number of samples, each of size n, and computed s
2 for each sample, the average sample

variance would be equal to the population variance �
2 (if we divided by n, then s

2  �
2).

Definition 7 The standard deviation of a set of measurements is defined to be the positive root of
the variance.

The standard deviation yields a measure of variability having the same unit of measurements as the original
data, whereas the units for variance are the square of the measurements units.
The sample standard deviation is denoted s, and the corresponding population standard deviation

is denoted �.

1.3 Quantile-Quantile plot

The Q-Q plot enables to visualise if the data are normally distributed. In this plot, each point corresponds to
each quantile2 of the data against the corresponding quantiles of the normal distribution. The added straight
line represents points which correspond exactly to the quantile of the normal distribution. The closer the
the points appear to the line, the more likely the data are normally distributed.

2quantiles are points taken at regular intervals from the cumulative distribution of a random variable, e.g. the 4-quantiles
are called the quartiles.
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Figure 1.9: SRBCT gene expression data. Q-Q plot of the expression values of one gene.

Exercise 9 On Figure 1.9, does the distribution of the expression values of one gene appear normally dis-
tributed?

1.4 The boxplot

The boxplot (also called box-and-whiskers plot) displays the symmetry of the distribution, includes numerical
measures of central tendency, and gives a very simple albeit thorough description of the data. The boxplot
uses the median and quartiles of a distribution.

How to construct a boxplot.

1. Order the data from smallest to largest value

2. Divide the ordered data set into two data sets using the median M = Q2 as the dividing values

3. The lower quartile Q1 is the median of the set of values consisting of the smaller values. The upper
quartile Q3 is the median of the set of values consisting of the largest values

4. Draw a box between Q1 and Q3 and draw a solid line to locate the median

5. The IQR is defined as the distance between Q3 and Q1

6. The end of the whiskers are usually defined as Q1�1.5IQR and the upper inner fence as Q3+1.5IQR

7. Any data not included between the whiskers is plotted as an outlier with a dot.

This is the information that we can draw from a boxplot:

1. the median,

2. the variability given by the IQR,

11



3. the symmetry of the distribution,

4. the skewness is indicated by the length of the whiskers,

5. the outliers.

Exercise 10 Using the results of Exercise ??, draw the boxplot of the SRBCT gene expression data. Discuss
or identify the 5 types of information from the boxplot that you represented.

EWS BL NB RMS
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1.
0
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5

Figure 1.10: SRBCT gene expression data. Boxplot of the same gene with respect to the tumour classes.

Boxplots provide a powerful graphical technique for comparing samples from several di↵erent treat-
ments or populations (Fig. 1.10).

Exercise 11 Do we observe any di↵erence in the gene expression values in the di↵erent tumour categories
(Fig. 1.10? Compare to the information contained in the boxplot to the density plots from Fig. 1.5.
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1.5 Relationship between two variables

1.5.1 Scatterplot

A scatterplot displays the general shape and direction of the relationship between two quantitative variables.
Each point on the plot represents the value of the two measured variables for each individual. The relationship
can be summarized by fitting a straight line through the plotted points. There is a strong relationship between
the two variables if the points are close to the line, and a weak relationship if the points are widely scattered
about the line.
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Figure 1.11: SRBCT gene expression data. Example of scatterplot for the expression values of 2 genes for
all patients. A linear least squares regression model has been fitted through the points and the fitted line is
represented in red.

Exercise 12 Comment on the relationship between the expression values of the two genes in Figure 1.11 for
both (a) and (b). Is a linear least squares regression model appropriate?

1.5.2 Numerical measure: correlation coe�cient

A numerical measure to evaluate the strength of a relationship between two quantitative variables is sum-
marized with a statistic called the Pearson’s correlation coe�cient.

Definition 8 The correlation coe�cient r measures the strength of the linear relationship between two
quantitative variables x and y. If the points in the scatter plot are (x1, y1), (x2, y2), . . . , (xn, yn) then the
correlation is defined by

r =
1

n� 1

nX

i=1

(
xi � x̄

sx
)(
yi � ȳ

sy
)

The correlation coe�cient r is a unit-free measure of the strength of linear relationship between the quanti-
tative variables x and y.

13
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Figure 1.12: Examples of correlation coe�cients for 100 observations (simulated data)

Remark 6 The Pearson’s correlation coe�cient measures the strength and direction of a linear relationship.
However, this measures is susceptible to outliers and does not apply when the relationship is not linear. In
the data represented in Figure 1.11 (b), the Pearson correlation coe�cient is -0.26 and seems to be a↵ected
by both several outliers at the tail of both variables and a possible non linear relationship. The Spearman
correlation is less sensitive than the Pearson correlation to outliers (correlation coe�cient is -0.25).

Side-by-side boxplots

Side-by-side boxplots provide a visual assessment of the similarity in distributions in several variables at a
time. Figure 1.13 displays such plot.
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Exercise 13 Comment on the similarity and di↵erences of the distributions of the gene expression values.
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Figure 1.13: SRBCT data. An example of side-by-side boxplots for the expression values of 10 genes.

1.6 Summary

This chapter was concerned with graphical and numerical description of data. In particular, frequency,
relative frequency histograms, boxplots, Q-Q plots are graphical techniques only applicable to quantitative
data.
Numerical descriptive measures include measures of central tendency (mode, median, arithmetic mean), and
measures of variability (range, interquartile range, variance and standard deviation of a set of measurements).
We examined plots for summarizing the relations between two quantitative variables. The material presented
here will be expanded in later chapters.
Key formulas include sample mean, sample variance, sample standard deviation and correlation coe�cient.
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Chapter 2

Probability distributions

Last chapter presented graphical and numerical descriptive techniques to summarize and describe a sample.
However, a sample is not identical to the population from which it was selected. This chapter is dedicated
to where the data come from and some important statistical distributions that will enable us to perform
statistical testing (see next Chapter).

2.1 Important terminology

Definition 9 A population is a complete set of individuals or objects that we want information about.
Ideally, we would collect the information about the whole population. However, this might be too expen-
sive, in time or money or simply impossible.
Instead we have to take a sample, a subset of the population, and use the data from the sample to infer
something about the population as a whole. The sample should be chosen so that it is representative of
the population but also that is it not biaised in any way. One way of achieving this is to take a random
sample from the population.

Definition 10 When we want to draw wider conclusions from an experiment, we need to be clear
about what the population of interest will be and we need to obtain a representative sample from that
population. Selection bias occurs when the sample itself is unrepresentative of the population we are
trying to describe.

Definition 11 Probabilities are used to describe the process of sampling from a population. We need
to know the probability of observing a particular sample outcome in order to make an inference about the
population from which the sample was drawn. To do this we need to know the probability associated with
each value of a given variable y (e.g. height). These probabilities generate a distribution of theoretical
relative frequencies called the probability distribution of y. Probability distributions di↵er for discrete
and continuous random variables. For discrete random variables, we will compute the probability of
specific individual values occurring. For continuous random variables, the probability of an interval of
values is the event of interest.
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Definition 12 A random variable (also called stochastic variable) is a random process with a numer-
ical outcome, i.e. a variable whose value is subject to variations due to chance. A random variable does
not have a single fixed value, it can take a set of possible di↵erent values. Each of them are associated
to a probability.
A discrete random variable is a random variable with discrete outcome, i.e. it assumes any of a
specified list of exact values. A continuous random variable assumes any numerical value in an
interval or collection of intervals (continuous outcome).

The distinction between discrete and continuous variables is pertinent as we are seeking the probabilities
associated with specific values of a random variable.

2.2 Probabilities distributions for discrete random variables

The probability distribution for a discrete random variable displays the probability P(y) associated with each
value of y.

Properties of discrete random variables

• The probability associated with every value of y lies between 0 and 1,

• The sum of the probabilities for all values of y is equal to 1,

• The probabilities for a discrete random variable are additive: the probability that y = 1 or y = 2 is
equal to P(1) + P(2)

2.2.1 Binomial distribution

Definition 13 A binomial experiment has the following properties:

1. The experiment consists of n identical trials,

2. Each trial results in one of two outcomes (labelled ‘success’ and ‘failure’),

3. The probability of success on a single trial is equal to ⇡ and ⇡ remains the same from trial to trial.

4. Each trial is independent (the outcome of one trial does not influence the outcome of any other
trial).

5. The random variable y is the number of successes observed during the n trials.

Exercise 14 An experiment on 300 rats is performed to test if a drug is e↵ective. 255 rats show a favourable
response and 45 an unfavourable response. Under which conditions this study satisfies the properties of a
binomial experiment? The binomial distribution for this example is plotted in Figure 2.1.
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Figure 2.1: The binomial distribution for n = 300 and ⇡ = 0.85.

Let ⇡ be the probability of success on a single trial and X the random variable denoting the number of
successes. The probability P of the event (X = k) that k successes occur out of n trials is:

P(X = k) =
n!

k!(n� k)!
⇡
k(1� ⇡)n�k for k = 0, . . . , n

where n! = n(n� 1)(n� 2) . . . (2)(1) (referred to as ‘n factorial’).

We denote by X ⇠ Bin(n,⇡) a random variable having a Binomial distribution with n trials with
success probability ⇡.

Because the random value X is discrete, the probabilities can be easily computed or listed in a Bino-
mial distribution table (see Appendix A.1 for an example of such table).
The built-in density function in R, dbinom(k,n,p), where p = ⇡ directly gives the values of the probability
P(X = k). The cumulative probability distribution function pbinom(k,n,p) gives P(X  k).

Exercise 15 Suppose that in the example above, the e↵ectiveness of the drug is known to be 85%. A new
experiment is performed on 10 rats. What is the probability that 8 rats or more will give a favourable
response? If we increase the sample size in the experiment, what is the probability that 16 rats or more will
give a favourable response for a sample of 20 rats?
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2.2.2 Poisson distribution

The Poisson distribution is a model for random counts events (i.e. ⇡ is very small and n is very large).

Definition 14 Let y be the number of events occurring during a fixed time interval or fixed region of
space. The probability disitrbuion of y is Poisson, provided the following conditions:

1. Events occur one at a time,

2. The occurrence of an event in a given period of time or region of space is independent of the
occurrence of the event in a non overlapping time period or region of space,

3. The expected number of events during one predion/region, � is the same as the expected number
of events in any other period/region.

The probability P of the event (X = k) that k successes occur out of n trials is:

P(X = k) =
e
��

�
k

k!

where � is the mean of the counts.
We denote by X ⇠ P(�) a random variable having a Poisson distribution with mean �.

Remark 7 Unlike the binomial distribution, there is no upper limit for X for a Poisson distribution (even
if it is unlikely that large values could occur, P(X = x) never equals 0.

The R density function dpois(k, lambda) directly gives the values of the probability P(X = k). The
cumulative probability distribution function ppois(k,lambda) gives P(X  k).

Figure 2.2 gives some example of Poisson distributions for di↵erent � values.

Figure 2.2: Poisson distribution for di↵erent � values (source: Wikipedia). The horizontal axis indicates the
number of occurrences k. The function is only defined at integer values of k.

Exercise 16 A team of wildlife scientists is surveying the number of small mammals in the region. Let x
denote the number of field mice captured in a trap over a 24-hour period. Suppose that x has a Poisson
distribution with an average number of mice captured per trap equals 2.3.
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What is the probability of finding 4 mice in a randomly selected trap?
What is the probability of finding more than 4 mice in a randomly selected trap?

There exists a coe�cient of dispersion (or index of dispersion) CD = s
2

x̄
(ratio sample variance/mean) which

indicates if the data comes from a Poisson distribution. The value should be around 1 for Poisson data. In
biological studies, there sometimes will be a larger number of extreme values than the Poisson distribution
predict. In that case (high counts), we would find s

2
> x̄ (i.e. CD value >1, overdispersion occurs) compared

to the expected s
2 = x̄ for a Poisson distribution. In the case of overdispersion, other distributions can be

used such as Negative Binomial or improvements of Poisson distribution for overdispersed data.

Remark 8 When n is large and ⇡ is small in a binomial experiment, the Poisson distribution provides a
good approximation to the binomial distribution. As a general rule, the Poisson distribution provides an
adequate approximation to the binomial distribution when n � 100, ⇡  0.01 and n⇡  20.

2.3 Probability distributions for continuous random variables

Discrete random variables have possible values that are distinct and separate. Other random variables are
most usefully considered to be continuous: their possible values for a whole interval (or range).
Theoretically, we can assume that continuous random variables can have values associated with infinitely
many points in a line interval. Figure 2.3 illustrates the probability distribution for a continuous random
variable (a) where the total area under the curve should be equal to 1. The probability that a continuous
random variable falls in an interval (say between two points a and b) is equal to the area under the curve
over the interval [a, b], written P(a < y < b).

Figure 2.3: Probability distribution for a continuous random variables. (a) indicates the total area under
curve, (b) the probability for a specific interval.
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2.3.1 Normal Distribution

Many variables of interest have a normal distribution. For example pre processed gene expression values (for
one given gene) are seen as a realisation of a random variable X having a normal distribution. The data
values follow a normal distribution with mean µ and variance �

2 (denoted ‘N (µ,�2)0).

The value of the distribution function is given by P(X  x), which is the probability of the population
to have values smaller than or equal to x.

Figure 2.4: (a) Density of the standard normal distribution, (b) Area under normal curve within 1 standard
deviation of mean.

The normal probability distribution is bell shaped and symmetrical about the mean µ (Fig. 2.4 (a)).
When µ increases the distribution moves to the right, if � is small (large) then the distribution is steep (flat).

We can calculate the probability that a measurement falls within any distance of the mean µ. For
example, if we select a measurement at random from a population with a normal distribution, the probability
is approximately 0.68 that the measurement will lie within 1 standard deviation of its mean (Fig. 2.4 (b))
(this value is given by the Empirical Rule). In fact, we can calculate the probability that a measurement
falls within any distance of the mean µ for a normal curve, or the probability that a measurement is below
or above a given value, using the pnorm(x, µ, �) function.

Exercise 17 An environmental protection agency has developed a procedure for measuring vehicle emission
level of nitrogen oxide. Let P denote the amount of this pollutant in a randomly selected vehicle in Brisbane.
Let suppose that the distribution of P can be adequately modelled by a normal distribution with a mean level
70 ppb (parts per billion) and standard deviation of 13 ppb.
What is the probability that a randomly selected vehicle will have emission levels less than or equal 60 ppb?
strictly greater than 90 ppb?
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Evaluating whether or not a population distribution is normal. To assess wheter or not a random
sample y1, y2, . . . , yn was selected from a normal distribution, we use a normal probability plot of the
data values. This plot is a variation of the quantile quantile plot introduced on Chapter 1 Section 1.3. In
the normal probability plot, we compare the quantiles from the data observed from the population to the
corresponding quantiles from the standard normal distribution.

Standard unit or Z score. There are numerous Normal distributions (with di↵erent means and di↵erent
standard deviations) and hence it is more practical to focus on one Normal distribution with mean 0 and
standard deviation 1 (the standard Normal distribution). We are going to subtract and divide the data
following a Normal distribution as it doe not change the shape of the Normal distribution. The standardized
values are now called z-scores, according to the following formula:

Definition 15 If X ⇠ N (µ,�), then

Z =
X � µ

�
so that Z ⇠ N (0, 1).

We can then use a Normal Standard distribution table for any kind of normal distribution (see Table in A.2).

Exercise 18 Suppose that our data follow a normal distribution. The 1.5 IQR rule in a boxplot states that
any observation above Q3 +1.5⇥ IQR or below Q1 � 1.5⇥ IQR should be flagged as an outlier. What is the
probablity that an observation is flagged as an outlier?
Use the Normal cumulative distribution function in Table ?? to obtain the values of Q1 and Q3 and then
compute the IQR and then the probability that an observation is an outlier.

2.3.2 T-distribution

The t-distribution has many useful applications for testing hypotheses about means of gene expression values,
in particular when the sample size is lower than thirty. If the data are normally distributed with sample mean
ȳ and standard deviation s, then the transformed values of

p
n(ȳ � µ)/s (i.e. centered and standardized)

follow a t-distribution with n � 1 degrees of freedom (denoted df)1. These transformed values are called
standardized z values, as seen in previous Section 2.3.1.
The t-distribution is approximately equal to the normal distribution when the sample size is greater than or
equal to thirty.
There exists many t distributions depending on the sample size (and therefore the number of degrees of
freedom) as shown in Figure 2.5(a).

1The number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary.
Estimates of statistical parameters can be based upon di↵erent amounts of information or data. The number of independent
pieces of information that go into the estimate of a parameter is called the degrees of freedom (df). In general, the degrees of
freedom of an estimate of a parameter is equal to the number of independent scores that go into the estimate minus the number
of parameters used as intermediate steps in the estimation of the parameter itself.

23



Definition 16 Properties of the Student’s t distribution

1. There are many di↵erent t distributions, specified by their degres of freedom,

2. The t-distribution is symmetrical about 0 (it has a mean equal to 0, similar to the z distribution),

3. The quantity

T =
ȳ � µ

s/
p
n

is called the t-statistic and has a t distribution (also called Student’s t distribution) with n � 1
degrees of freedom.

Remark 9 When n increases, the distribution of t approaches the distribution of z.
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Figure 2.5: Density of t distribution with di↵erent degrees of freedom.

2.3.3 Chi-squared distribution

The �
2 distribution with k degrees of freedom is the distribution of a sum of the squares of k independent

standard normal random variables. The chi-squared distribution is used in the common chi-squared tests
for goodness of fit of an observed distribution to a theoretical one, the independence of two criteria of
classification of qualitative data (see following chapter and practical). Figure 2.6 shows examples of �

2

distribution densities for di↵erent values of degrees of freedom (denoted df ).
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Definition 17 Some of the properties of the �
2 distribution are as follows:

1. The �
2 distribution is positively skewed with values between 0 and 1,

2. There are many �
2 distributions labeled by their degrees of freedom,

3. The mean and variance are given by the degrees of freedom: µ = df and �
2 = 2⇥ df
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Figure 2.6: Density of �2 distribution with di↵erent degrees of freedom.

2.3.4 F-distribution

The F-distribution is important for testing the equality of two (or more) variances from two (or more) groups
of samples. It can be shown that the ratio of variances from two independent sets of normally distributed
random variables follows an F-distribution. There are two degrees of freedom involved with this distribu-
tion, one for the numerator, and one for the denominator. More specifically, if if two population have equal
variances (�2

1 = �
2
2), then s

2
1/s

2
2 follows an F-distribution with df1 = n1 � 1, df2 = n2 � 1 degrees of freedom

(⇠ Fn1�1,n2�1), where s21 (s22) is the sample variance from the first (second) group and n1 (n2) is the number
of measurements from the first (second) group.

Similar to the �
2 distribution, the F-distribution has a skewed density curve. There exists many

density curves for each combination of the numerator and denominator degrees of freedom (see Figure 2.7.
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Definition 18 Some of the properties of the F distribution are as follows:

1. Like the �
2 distribution, the F distribution only assumes positive values,

2. The F distribution is non symmetrical,

3. There are many di↵erent shapes of F distributions, specified by the degrees of freedom associated
to s

2
1 and s

2
2.
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Figure 2.7: Density of F distribution with di↵erent degrees of freedom.

2.4 Summary

Distribution Parameters Density Cumulative proba-
bility distribution

Quantiles Random sampling
of N observations

Binomial n, p dbinom(k, n, p) pbinom(q, n, p) qbinom(↵, n, p) rbinom(N,n, p)
Poisson � dpois(k,�) ppois(q,�) qpois(↵,�) rpois(N,�)
Normal µ,� dnorm(x, µ,�) pnorm(q, µ,�) qnorm(↵, µ,�) rnorm(N,µ,�)

t df dt(x, df) pt(q, df) qt(↵, df) rt(N, df)
�
2

df dchisq(x, df) pchisq(q, n) qchisq(↵, n) rchisq(N, df)
F df1, df2 dt(x, df1, df2) pt(q, n1, n2) qt(↵, n1, n2) rt(N, df1, df2)

Table 2.1: R functions for random variables following distributions presented in this Chapter.

In this Chapter we have seen that there are many R functions that can be used for the distributions we have
covered, where d stands for density, p for cumulative probability distribution, q for quantiles ↵ and r for
drawing random samples (Table 2.1).
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The Binomial distribution is an important example of a discrete random variable and is used to model
sampling from finite populations. The Poisson distribution is a model for random counts of rare events. The
coe�cient of dispersion gives a rough measure for determining whether data could come from a Poisson dis-
tribution. The Normal distribution is a model for continuous random variables. The normality of a variable
distribution can be assessed via normal probability plot. The t distribution is used for a small number of
samples. Both Normal and t distribution are similar when the number of samples is large.

In this Chapter we have covered some important distributions and shown how to calculate probabilities
of events given the distribution of some random variables. Next Chapter will cover statistical testing and
statistical inference.
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Chapter 3

Statistical tests

In Chapter 2, we defined families of hypothetical distributions. The objective of statistics is to make in-
ferences about a population based on the information contained in a sample. Populations are characterized
by numerical descriptive measures called parameters (for example mean, median, standard error...). In any
research setting, the specific values of such parameters are unknown and inferences must be made about
these parameters.

3.1 Estimation and Hypothesis testing

Methods for making inferences about parameters fall into one of two categories: either we will estimate the
value of the population parameter of interest, or we will test a hypothesis about the value of the parame-
ter. This involves di↵erent procedures, answering di↵erent types of questions. In estimating a population
parameter we are answering the question: ‘What is the value of the population parameter?’. In testing a
hypothesis, we are for example answering the question: ‘Does the population parameter satisfy µ > 20?’

3.1.1 Hypothesis testing

Assume we have µ0 a number representing a hypothesized population mean in an experiment.
With respect to the real population mean µ the null hypothesis can be formulated as:

H0 : µ = µ0

This hypothesis is also called the negation of the alternative (or research) hypothesis:

H1 : µ 6= µ0

Either H0 or H1 is true. The alternative hypothesis is true if H1 : µ < µ0 or H1 : µ > µ0 holds true. This
type of alternative hypothesis is called two-sided.
A one-sided hypothesis would be for example: H1 : µ > µ0.

The null hypothesis is statistically tested against the alternative using a suitable distribution of a
statistic, where the statistic is computed from the experimental data. By comparing the statistic with its
distribution, we can draw a conclusion with respect to the null hypothesis and reject or not H0. The proba-
bility to reject H0, given the truth of H0 is called the significance level, generally denoted ↵ and usually set
to ↵ = 5% (but this is not compulsory).

28



3.1.2 Statistical test

Definition 19 A statistical test is based on the concept of proof by contradiction and is composed of
the five parts listed here:

1. Null hypothesis H0,

2. Research hypothesis (alternative hypothesis): H1,

3. Test statistics (T.S),

4. Rejection region,

5. Check assumptions and draw conclusions.

3.1.3 Example with a Z-test

f (x)

µ = 520

rejection region

areaα

acceptance region

Figure 3.1: Rejection region for the soybean example for H1 : µ > 520

Definition 20 If a set of measurements (x1, x2, . . . , xn) ⇠ N (µ,�2), then

Z =
x̄� µ

�/
p
n

so that Z ⇠ N (0, 1).

When applying a Z-test, we assume that

• the standard deviation � is known

• the data follow a normal distribution.

• Hypotheses that can be tested with a Z-test:

– Case 1: H0 : µ  µ0 vs. Ha : µ > µ0 (right-tailed test)

– Case 2: H0 : µ � µ0 vs. Ha : µ < µ0 (left-tailed test)

– Case 3: H0 : µ = µ0 vs. Ha : µ 6= µ0 (two-tailed test)
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• The test statistics is

z =
ȳ � µ0

�/
p
n

• The rejection region is:

– Case 1. Reject H0 if z � z↵

– Case 2. Reject H0 if z  z↵

– Case 3. Reject H0 if |z| � z↵

Example 1 An agricultural service wants to determine whether the mean yield per acre (in bushels) for a
particular variety of soybeans has increased since last year. The mean yield was 520 bushels per acre. We
have a sample of n = 36 one-acre plot. From these data we compute the sample mean x̄ = 573 and the
sample standard deviation s = 124. Can we conclude that the mean yield for all farms is above 520?

1. H0 : µ  520

2. H1 : µ > 520

3. T.S: z = ȳ�520
124/

p
36

4. For ↵ = 0.025, we reject H0 if T.S. > T.S↵, or, equivalently, if the p-value is < ↵.

The shaded area in Figure 3.1 illustrates the rejection region with an area ↵ in the right tail of the
distribution of x̄. Determining the location of this rejection area is equivalent to determining the z value that
has an area ↵ to its right (here ↵ = 0.025). A statistics Table for the N (0, 1) indicates that this value is
T.S↵ = 1.96 (also given by qnorm(0.975, 0, 1))⇤.
We have

T.S = z =
x̄� µ

�/
p
n
=

573� 520

124/
p
36

= 2.56

5. Since we have T.S. > T.S↵, we reject H0 in favor of the alternative hypothesis and conclude that
the average soybean yield per acre is greater than 520.

3.1.4 One and two sided tests

f (x)

rejection region
µ = 520

(a) f (x)

µ = 520

(b)

rejection region rejection region

Figure 3.2: (a) One and (b) two sided tests rejection regions based on the the soybean example.

In the example above we conducted a one-sided test where H1 : µ > 520. If our alternative hypothesis
was instead H1 : µ < 520, small values of x̄ would indicate the rejection of null hypothesis. The rejection
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region would be located in the lower tail of the distribution of x̄ (Fig. 3.2 (a)).
A two-sided test could be formulated forH1 : µ 6= 520 where both large and small values of x̄ would contradict
the null hypothesis and the rejection region would be located in both tails of the distribution of x̄ (Fig. 3.2
(b)).

3.2 Statistical tests with discrete variables

3.2.1 Binomial test

Suppose a coin is tossed 10 times and 9 times out of 10 it comes up heads. How suspicious is this? Let’s
calculate the probability that this could happen for a fair coin. Let X the number of heads, then for a fair
coin, X ⇠ . We have

P(X = 9) =

Remark. Samples independence: here we used the assumption that each toss is independent from each other.

In this example our assumption is that the coin is fair, so H0 : p = 0.5, against the alternative hy-
pothesis H1 : p > 0.5 (i.e the coin is biased towards head). What is the probability that P(X � 9)?

P(X � 9) = 1� P(X  8) = 1 - pbinom(8, 10, 0.5) = 0.0107

Since the p-value is less than our significance level ↵ = 0.05, we reject the null hypothesis. Alterna-
tively, we can use the R function binom.test:

> binom.test(9, 10, 0.5, alternative = 'greater')

Exact binomial test

data: 9 and 10

number of successes = 9, number of trials = 10, p-value = 0.01074

alternative hypothesis: true probability of success is greater than 0.5

95 percent confidence interval:

0.6058367 1.0000000

sample estimates:

probability of success

0.9

3.2.2 Chi-squared test

The chi-square test assesses whether data which appear to be dependent is the result of random variability,
rather than real dependence.

Definition 21 If two variables are dependent, it means that one variable has some value to predict the
other.

We arrange the data in a contingency table with r rows and c columns. The null hypothesis for the �
2 test

is independence: H0 : the row and the column variables are independent, vs. H1 : the row and the column
variables are dependent (associated). Without going into too many details, the �

2 statistic is the sum of all
cells in the contingency table of

(observed values� expected values)2/expected values

Rejection of the null hypothesis indicates that the apparent association is not reasonably attributable to
chance (it does not indicate anything about the strength of the type of association). This test statistic is
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Age category
Severity I II III IV All Ages
Moderate 15 32 18 5 70

Mildly severe 8 29 23 18 78
Severe 1 20 25 22 68

All severities 24 81 66 45 216

Table 3.1: Contingency table of example 19.

also called ‘Pearson’s �
2 test’ and follows a |chi2 distribution with (nr-1)(nc-1) degrees of freedom (where

nr = number of rows and nc = number of columns from the contingency table).

Exercise 19 A random sample of 216 patients having a skin disease are classified into 4 age categories as
represented in the contingency Table 3.1. We conduct a test to determine if the severity of the disease is
independent of the age of the patient. State the null and alternative hypothesis and draw conclusions on the
outputs obtained using the chisq.test function in R.

> table.chisq = t(matrix(c(15, 32, 18, 5, 8, 29, 23, 18, 1, 20, 25, 22), nrow = 4, ncol = 3,

+ dimnames =list(c('I', 'II', 'III', 'IV'), c('Mod', 'Mild', 'Severe'))))
> chisq.test(table.chisq)

Pearson's Chi-squared test

data: table.chisq

X-squared = 27.135, df = 6, p-value = 0.0001366

Remark 10 The accuracy of the approximation of the sampling distribution of �2 by a chi-square distribu-
tion depends on both the sample size n and the number of cells k. The approximation should be adequate
if n/k exceeds 1, if no cell has a count less than 1 and no more than 20% of the cells have counts less
than 5 counts. When the approximation is not valid, we can either combine levels of categorical variables to
increase the observed cell counts (caution! on how to redefine the levels of the categorical variables), or use
exact methods such as the Fisher’s exact test (fisher.test()).

3.3 Statistical tests with continuous variables

3.3.1 One sample tests

We have already seen an example of one sample test in Subsection 3.1.3. This type of test tests for the value
of the mean of the data, for example: H0 = µ0 vs. H1 : µ 6= µ0 or H1 : µ < µ0 or H1 : µ > µ0.

Z-test for known variance. We have seen in Subsection 3.1.3 an example of a Z-test, which tests for the
value of the mean of the data, and which assumes that the standard deviation � is known and that the
data are assumed to follow a normal distribution.

t-test for unknown variance. In most research situation, the standard deviation � is unknown and
the Z-test cannot be applied. In such cases, a t-test is appropriate. The test statistic T.S is defined by

T.S = T =
x̄� µ0

s/
p
n

⇠ ⌧n�1

where s is the sample standard deviation estimated from the data. The statistic table for the Student’s t-test
is given in Appendix A.3.
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Exercise 20 Let’s go back to the SRBCT example from Chapter 1, Figure 1.2. We would like to test if
the mean expression of this single gene across all 63 samples is equal to 0.5. State the null and alternative
hypothesis, the T.S, the rejection region and conclude.
We have x̄ = 0.5488, s = 0.2525146.

Alternatively, we can use the t.test function:

> t.test(c(data.gene), mu =0.5, alternative = 'two.sided')

One Sample t-test

data: c(data.gene)

t = 1.5339, df = 62, p-value = 0.1301

alternative hypothesis: true mean is not equal to 0.5

95 percent confidence interval:

0.485205 0.612395

sample estimates:

mean of x

0.5488

3.3.2 Two sample t-tests

T-tests are most often used when comparing two groups of patients (e.g. sick and normal) and we want to
test the di↵erence between the population means µ1 and µ2. For example in microarray data analysis, we
would like to identify some genes for which the expression level means di↵er between the two groups as these
genes might be crucial in explaining the development of a disease. The null hypothesis H0 : µ1 = µ2 is to
be tested against H1 : µ1 6= µ2 (two-sided test) or (less commonly) H1 : µ1 < µ2 or H1 : µ1 > µ2 (one-sided
tests). The two-sided test can also be written as H1 : µ1 � µ2 = 0.
In the following we denote by x̄1 (x̄2) the sample mean of the first (second) group, and by s1 (s2) the sample
standard deviation of the first (second) group, and by n1 (n2) the number of patients in the first (second)
group.

With unequal variance. When we make the assumption that the variances between the two groups s
2
1

and s
2
2 are unequal for a single variable, i.e. single gene expression, then, the t-test statistics is defined as

T.S = T =
(x̄1 � x̄2)� (µ1 � µ2)p

s
2
1/n1 + s

2
1/n2

.

Under H0, the t-test statistics is defined as

T.SH0 = TH0 =
(x̄1 � x̄2)p

s
2
1/n1 + s

2
1/n2

⇠ tn1+n2�2.
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The test statistics is large if, under H0, the di↵erence between the means is large and the sample
standard deviations are small.

Exercise 21 Back to the the SRBCT experiment, the densities of a chosen gene were represented for each
sample group in Figure 1.5 in Chapter 1. We would like to test if there is a di↵erence between the expression
means between the groups ‘BL’ and ‘NB’. Is the use of a t-test with unequal variances valid? State the null
and alternative hypothesis, the T.S, the rejection region and conclude.
We have: µBL = 0.8093, s2

BL
= 0.201531, nBL = 8, µNB = 0.48885, s2

NB
= 0.01977323, nNB = 12.

Alternatively, we can use the built-in function t.test by specifying var.equal = FALSE:

> t.test(c(data.gene[class=='BL' | class == 'NB']) ~ as.factor(class[class=='BL' | class == 'NB']),
+ alternative = 'two.sided', var.equal = FALSE)

Welch Two Sample t-test

data: c(data.gene[class == "BL" | class == "NB"]) by as.factor(class[class == "BL" | class == "NB"])

t = 1.956, df = 7.924, p-value = 0.08653

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.05796539 0.69886539

sample estimates:

mean in group BL mean in group NB

0.80930 0.48885

The boxplot of the expression of this chosen genes for the two groups is displayed in Fig. 3.3. Does the
boxplot reflect the conclusion of the statistical test?
This test is also called the Welch two sample t-test.
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Figure 3.3: Boxplot of the expression levels of a chosen gene for each of the two groups (a): BL and NB
(example 21) and (b): EWS and RMS (example 22).
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With equal variance. We now make the assumption that the variances in each group are equal (i.e.
s
2
1 = s

2
2). By making this assumption we can ‘pool’ the sample variance from the two groups and weight it

with respect to the number of patients in each group:

s
2
p
=

(n1 � 1)s21 + (n2 � 1)s22
n1 + n2 � 2

.

The test statistic follows:

T.S = t =
(x̄1 � x̄2)� (µ1 � µ2)

sp

p
1/n1 + 1/n2

⇠ tn1+n2�2.
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Exercise 22 For the same gene as illustrated in the above example 21, we would like to test if there is a
di↵erence between the expression means between the groups ‘EWS’ and ‘RMS’. Is the use of a t-test with
equal variances valid? Conclude on the t-test
We have µEWS = 0.5311217, s2

EWS
= 0.04547513, nEWS = 23 and µRMS = 0.5009, s2

RMS
= 0.03608333,

nRMS = 20.

Alternatively, we can use the built-in function t.test by specifying var.equal = TRUE:

> t.test(c(data.gene[class=='EWS' | class == 'RMS']) ~ as.factor(class[class=='EWS' | class == 'RMS']),
+ alternative = 'two.sided', var.equal = TRUE)

Two Sample t-test

data: c(data.gene[class == "EWS" | class == "RMS"]) by as.factor(class[class == "EWS" | class == "RMS"])

t = 0.4874, df = 41, p-value = 0.6285

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.09499128 0.15543476

sample estimates:

mean in group EWS mean in group RMS

0.5311217 0.5009000

3.3.3 F-test

To compare the variance between two groups. To validate the assumption of the t-test on the equality
of the variances, we can test the null hypothesis H0 : �2

1 = �
2
2 (i.e. H0 : �2

1/�
2
2 = 1) against H0 : �2

1 6= �
2
2 .

As mentionned in Chapter 2, Section 2.3.4, The F statistics

T.S. = F =
s
2
1

s
2
2

⇠ F(n1�1),(n2�1)

Exercise 23 We test the equality of variance for both cases presented in examples 21 and 22. State the null
and alternative hypothesis in both cases and conclude on the F-test outputs using the var.test R function.

> var.test(data.gene[class=='EWS'], data.gene[class=='RMS'], alternative = 'two.sided')
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F test to compare two variances

data: data.gene[class == "EWS"] and data.gene[class == "RMS"]

F = 1.2603, num df = 22, denom df = 19, p-value = 0.6149

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.5085289 3.0331510

sample estimates:

ratio of variances

1.260281

> var.test(data.gene[class=='BL'], data.gene[class=='NB'], alternative = 'two.sided')

F test to compare two variances

data: data.gene[class == "BL"] and data.gene[class == "NB"]

F = 10.1921, num df = 7, denom df = 11, p-value = 0.0009716

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

2.711651 47.999456

sample estimates:

ratio of variances

10.19211

To compare the means between more than two groups. More generally, the F-test, through an
ANOVA (ANalysis Of VAriance), enables to test the equality of means in K groups

H0 : µ2
1 = · · · = µ

2
K

vs. H1 : 9(j, k)/µ2
j
6= µ

2
k

for (j 6= k) 2 K, i.e. the alternative hypothesis is: ‘There is at least one group which mean is di↵erent from
another group mean’, or ’no mean is the same’.

Assumption of the Analysis of Variance.

1. The samples are independent random samples, i.e. the results from one sample do not a↵ect the
measurements observed in another sample.

2. Each sample is selected from a normal population.

3. The mean and variance for population or group k are, respectively, µk and �
2
k
, k = 1, . . . ,K. The K

variances are equal : �2
1 = �

2
2 = · · · = �

2
K

= �
2.

Analysis of Variance.

The one-way ANOVA breaks the total variability of the data into the error variability within groups and the
variability between groups. Each variability component is summarized by a sum of squares deviations and a
degree of freedom. The formula for the one-way ANOVA F-test statistic is

F =
between group variability

within group variability
⇠ FK�1,n�K

Traditionally, the information to test the nullity of the parameters in a linear regression is presented
in an analysis of variance table (ANOVA), as shown in Table 3.2.

SST is the total sum of squared variation and since the ANOVA is breaking up the variance into
di↵erent sources, we have SST = SSW + SSB.
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Source deg. Freedom Sum of Squares Mean Squares F
Between group variability K � 1 SSB SSB/(K � 1) F

Within group variability (Residuals) n�K SSW SSW/(n�K)
Total n� 1 SST

Table 3.2: Analysis of Variance Table.

Exercise 24 Combining the data from exercises 22 and 22, we perform an ANOVA on the expression of a
given gene with respect to the four groups of tumor (see the R code below). State the null and alternative
hypothesis, identify each cell from Table 3.2 and draw a conclusion.
Based on the previous examples in this Chapter, do you think the assumptions of the ANOVA are verified in
this example?

> summary(aov(data.gene ~ class))

Df Sum Sq Mean Sq F value Pr(>F)

class 3 0.639 0.21303 3.792 0.0148 *

Residuals 59 3.314 0.05617

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Remark 11 In the latter exercise we used the function aov. Another built-in function that can be used is
oneway.test which gives the same results at the one-way ANOVA (note the argument var.equal = TRUE).

> oneway.test(data.gene ~ class, var.equal = TRUE)

One-way analysis of means

data: data.gene and class

F = 3.7923, num df = 3, denom df = 59, p-value = 0.01483

Remark 12 A one-way ANOVA testing the mean for two groups will give the same results as a t-test for
equal variances.

3.4 Multiple testing

Rationale behind multiple testing. In the ANOVA test in exercise 24, if the null hypothesis is rejected,
the test tells us if at least one mean group is di↵erent from the other mean groups, but its does not tell
us which groups have means that are significantly di↵erent. One straightforward procedure is to perform
pairwise t-tests between each of the two groups. However, when K is large there are K(K�1)/2 comparisons
to perform. If we set up a significance level at ↵ = 5% (i.e. there is 5% chance of making a mistake by
wrongly rejecting the null hypothesis), it means that there is a 95% chance of not making a mistake. If we
perform 3 pairwise t-tests, the probability of making no mistake is 0.95⇥ 0.95⇥ 0.95 = 0.8574 (if we assume
the tests independents). So the chance of making at least one mistake is 14.26%.
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The probability of falsely rejecting at least one of the hypotheses increases as the number of tests
increases. Thus, even if we have the probability of type I error at ↵ = 5% for each individual test, the
probability of falsely rejecting at least one of those tests is larger that 0.05.

Some procedures were proposed to adjust the level ↵0
< ↵ or to define the critical value t1�↵/2,n�K .

For example the Bonferroni test sets ↵0 = ↵/(K(K � 1)/2). Tukey’s ‘Honest Significant Di↵erence’ method
give studentized confidence intervals with adjusted p-values.

Exercise 25 Interpret the Tukey multiple comparisons of means test following last exercise 24:

> TukeyHSD(aov(data.gene ~ class), conf.level = 0.95)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = data.gene ~ class)

£class

diff lwr upr p adj

BL-EWS 0.27817826 0.02098086 0.53537566 0.0291015

NB-EWS -0.04227174 -0.26541004 0.18086656 0.9585542

RMS-EWS -0.03022174 -0.22180165 0.16135817 0.9753484

NB-BL -0.32045000 -0.60645526 -0.03444474 0.0222160

RMS-BL -0.30840000 -0.57052815 -0.04627185 0.0148513

RMS-NB 0.01205000 -0.21675421 0.24085421 0.9990257

Rationale about confidence intervals. Suppose that each random variables (x1, x2, . . . , xn) follow a
Normal distribution N (µ,�).

• The sample mean x̄ roughly has a Normal distribution N (µ,�/
p
n).

• In a Normal distribution, about 95% of the observations occur within 1.96 standard deviations of the
mean µ. So in 95% of the samples, the sample mean x̄ will be within 1.96�/

p
n of µ.

• Reversing this, 95% of the samples of µ will be within 1.96�/
p
n of x̄

This means that when we use the sample mean to estimate the population mean, we can also give an idea
of how far away the population mean could be from our estimate. We say that we are 95% confident that
the poulation mean is

x̄± 1.96
�p
n
,

or alternatively that the population mean is in the interval

✓
x̄� 1.96

�p
n
, x̄+ 1.96

�p
n

◆

which is the confidence interval for the population mean.

This allows us to say something about a population based on our sample, if � was known.
The confidence interval is an observed interval (i.e. it is calculated from the observations), in principle di↵er-
ent from sample to sample, that frequently includes the parameter of interest, if the experiment is repeated.
Confidence intervals consist of a range of values (interval) that act as good estimates of the unknown popu-
lation parameter.
Caution: a confidence interval does not predict that the true value of the parameter has a particular proba-
bility of being in the confidence interval given the data actually obtained.
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Multiple testing for highly dimensional data sets In high-throughput experiments such as microar-
rays or next-generation sequencing data, where the expression or the counts of hundreds of thousands of
genes, transcripts are measured, we perform one test on each of these variables. Multiple correction needs
to be applied in order to control the number of false positives genes or transcripts (i.e that are declared dif-
ferentially expressed between di↵erent conditions although they are not). Commonly used multiple testing
adjustments procedure include ‘Benjamini and Hochberg’ False Discovery Rate (FDR) or the most conser-
vative Bonferroni correction. The practicals in Bioconductor will emphasise on this very important issue.

3.5 Summary

The traditional approach of hypothesis testing consists of 5 parts: research hypothesis, null hypothesis,
test statistic, rejection region, checking asusmptions and drawing conclusions. A statistical test employs
the technique of proof by contradiction (experiments are conducted to veryfy the hypothesis through the
contradiction of the null hypothesis).
We considered statistical tests with categorical and continuous variables, one and two sample tests, F-test
and ANOVA, as well as the problem of multiple testing.
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Chapter 4

Clustering of large scale data

Many techniques have become available recently that produce vast amounts of quantitative biological data.
These techniques include for example RNA sequencing, various gene expression techniques and protein
expression analysis. In this Chapter, we will introduce common clustering techniques applied to high-
throughput data.
High throughput, whole genome DNA microarrays enable to monitor the simultaneous expression of multiple
genes. These techniques can reveal which genes are expressed together, or co-expressed, which might then
lead to the identification of genes that might be functionally related. This information can then be used to
help assign possible functions to unindentified genes with the same expression patterns.

In the first part of this Chapter, we will consider hierarchical clustering, one of the most widely
used approach for analyzing patterns of gene expression microarray data. We will then introduce Principal
Component Analysis (PCA), another popular tool used not only for dimension reduction (to highlight the
most ‘important’ information from the data) but also for clustering. Finally, we will present the k�means
algorithm as another clustering tool.

4.1 Distances

We are interested in genes that have similar expression profiles: each gene is measured across n samples and
is represented by a vector of length n.

Definition 22 Theoretical properties of a measure of similarity (or dissimilarity) between two sets of
measurements (for example the expression levels of two genes, A and B):

• d(A, B) � 0. The distance between two gene profiles must be strictly greater than 0.

• d(A, A) = 0. The distance between a profile and itself must be 0.
d(A, B) = 0 () A = B. Conversely, if the distance between two profiles is zero, then the profiles
must be identical.

• d(A, B) = d(B, A). The distance between profile A and profile B must be the same as the distance
between profile B and profile A.

• d(A, C)  d(A, B) + d(B, C) (also known as the triangle inequality rule).

4.1.1 Euclidian distance

The Euclidian distance is an extension of distance we use in everyday life. It is the stright-line distance
betwen points in a 2 or 3 dimensional space.
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In two dimensions, the distance between two points is calculated using the Pythagerean theorem.
In three dimensions, say we have two points A and B with coordinates (xA, yA, zA) and (xB , yB , zB), then
the Euclidian distance between them is defined as:

d(A,B) =
p
(xA � xB)2 + (yA � yB)2 + (zA � zB)2

It is the same idea for the gene expression profiles measured in a n dimensional space. We can then extend
the definition to higher dimensions:

d(A,B) =

vuut
nX

i=1

(Xi,A �Xi,B)2

The Euclidian distance is commonly used and is easy to evaluate. However, the problem with this distance
is that it is not scale invariant. Two genes with similar shapes but with di↵erent magnitude will appear to
be very distant. This may be observed for genes whose transcription is coordinated but do not necessarily
produce equivalent response. This problem can be resolved by centering the profiles. Or by using an other
distance, such as the correlation distance.

4.1.2 Pearson’s correlation distance

Consider a distance between two points, A and B. The definition of the Pearson’s correlation measure for
two sets of expression levels XA = {X1,A, X2,A, . . . , Xn,A} and XB = {X1,B , X2,B , . . . , Xn,B} is given by:

r(A,B) =
1

n� 1

nX

i=1

(
Xi,A � X̄A

sA
)(
(Xi,B � X̄B

sB
)

where X̄A is the sample mean of the values in XA, and sA is the sample standard deviation of the values in
XA (same for X̄B and sB).
As already seen in Chapter 1 subsection 1.5.2, the correlation value ranges from -1 (complete negative
correlation) through 0 (no correlation) to +1 (perfect correlation).
In order to obtain a measure of similarity, we need to convert this measure into a distance measure with the
properties listed above. We can use either

d((A,B) = 1� |r(A,B)|

or
d((A,B) = 1� r(A,B)2

The Pearson’s correlation coe↵cient measures distance in terms of the shape of the patterns, not its absolute
value (as opposed to the Euclidian distance). A limitation of this distance is that we might want to assign
greater significance when both genes are highly expressed than when they are both poorly expressed.
Another limitation is that this standard correlation coe�cient is susceptible to being skewed by outliers (as
underlined in Chapter 1). Spearman’s correlation is a non-parametric measure of correlation that is robust
to outliers.

4.2 Hierarchical clustering

Definition 23 A clustering or a cluster analysis aims at assigning a set of objects into groups
(called clusters) so that the objects in the same cluster are more similar (in some sense or another) to
each other than to those in other clusters. Cluster analysis itself is not one specific algorithm, but the
general task to be solved. It can be achieved by various algorithms.
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Figure 4.1: Examples of di↵erent cluster dendograms using di↵erent distances: (a): Euclidian, (b): Pearson’s
correlation coe�cient distance 1�|cor|, (c): Pearson’s correlation coe�cient distance 1�cor2, (d) Spearman’s
correlation coe�cient distance 1� cor2. The red rectangles drawn around the branches indicate 4 clusters.

4.2.1 Dendrogram

A dendrogram is a tree diagram, visually representing clusters amongst variables or samples. The dendro-
gram does not only represent a single clustering, but rather a multilevel hierarchy, and the height of each
node is proportional to the value of the intergroup similarity between the two lower nodes. A hierarchy of
clusters is built, with usually a bottom up approach: the closest pair of observation are first joined together
to form a cluster, and the process is repeated until there is no more observation to merge: at the lowest
level, each cluster contains a single observation, and at the highest level there is only one cluster containing
all the data. Therefore, it is essential to specify a metric - or distance between pairs of observations, as well
as a linkage criterion to specify the dissimilarity of sets. The metric will influence the shape of the clusters
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(Euclidian or 1-correlation distances are often used), whereas the linkage criterion determines the distance
between sets of observations as a function of the pairwise distances between observations (often the Ward’s
method is used with the Euclidian distance).

There are some common ways to define the proximity of clusters. For example,

• Single linkage clustering uses the minimum distance between two objects in the clusters.

• Complete linkage clustering defines the proximity as the maximum of the distances between all possible
pairs of objects in each cluster.

• The Ward criterion minimizes the total within-cluster variance. At each step the pair of clusters
with minimum cluster distance are merged. The initial cluster distances in Ward’s minimum variance
method are therefore defined to be the squared Euclidean distance between points.

Further analysis is then needed after the clustering to decide which partitions are useful. By cutting
o↵ the dendrogram at various heights, di↵erent numbers of clusters emerge, and the sets of clusters are
nested within one another.The choice of partitions to use in experimental interpretation is almost always
subjective, but can be governed by extra information not available during the clustering process (for example
set of genes having the same biological function, or patient outcomes, suggesting that the cluster has some
biological meaning).

Exercise 26 Comment on the dendrograms on the samples obtained in Fig. 4.1.

4.2.2 Heatmap

Hierarchical clustering methods enable hierarchical representations of a measure of dissimilarity between
groups of observations (i.e. groups of genes and groups of patients in our SRBCT example). The measure
of dissimilarity is based on pairwise dissimilarities among the observations in the two groups.

In the context of microarray data, a heatmap representation arranges both the rows and the columns
of the expression matrix in orderings derived from hierarchical clustering. By cutting the dendrograms at
various heights, di↵erent number of clusters emerge and the set of clusters are nested within one another.
This kind of representation is useful to interpret the gene clusters in terms of biological processes for example.

Figures 4.2 displays such dendrograms, using the Euclidian distance and the Ward method. The top
of the figures shows that the highest break separates the class EWS from the other classes. If we cut the right
hand side of the plot further, we are able to separate the NB patients from BL and RMS. The dendrogram
on the left hand side clusters the genes with similar profiles across the samples.
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Figure 4.2: SRBCT data. Heatmap of hierarchical clustering applied independently to the rows (50 genes)
and columns (63 patients) determining the ordering of the rows and columns. The colors range from brigh
green (negative or under expression) to bright red (positive or overexpression). Euclidian distance and Ward
linkage criterion were used.

4.3 Illustrative data set: metabolome analysis of yeast

The illustrative example that will be used in the remaining of this chapter is a data set from a yeast study
(Villas-Boas et al (2005)1). In this data set, two Saccharomyces cerevisiae strains were used: a reference
strain (wild-type: WT) and a mutant (MT) were carried out in batch cultures under two di↵erent environ-
mental conditions in standard mineral media with glucose as the sole carbon source. The authors assayed
metabolite levels in the two yeast strains (WT and MT) and two di↵erent environmental conditions, aerobic
and anaerobic perturbations (AER and ANA). After normalization and pre processing, the metabolome
data results in 37 metabolites and 55 samples which include 13 MT-AER, 14 MT-ANA, 15 WT-AER and
13 WT-ANA samples.

Biological question. One of the main questions when analyzing high throughput data is whether the
information provided by the metabolites spectra relate to the experimental conditions, or rather, to some
interfering signals. In this chapter, we are focusing on di↵erent techniques to vizualize datasets in a ‘blind’
(unsupervised) way, i.e. when the biological background information, such as group a�liation or class label
is not used in the statistical approaches. The aim is to represent the major or global information from the
data sets without experimental knowledge.

1Villas-Boas et al., 2005 ’High-throughput metabolic state analysis: the missing link in integrated functional genomics of
yeasts’, Biochem. J. 388, 669-677
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4.4 Principal Component Analysis

A well-established technique for vizualization and extraction of relevant information is the popular Principal
Component Analysis (PCA).

4.4.1 Principal Component Analysis

Principle. The aim of PCA2 is to reduce the dimensionality of the data while retaining as much infor-
mation as possible. ‘Information’ is referred here as variance. The idea is to create uncorrelated artificial
variables called principal components (PCs) that combine in a linear manner the existing and possibly corre-
lated variables (here the genes, or the metabolites). The dimension is reduced by projecting the data into the
smaller subspace spanned by the PCs, while capturing the largest sources of variation between the samples.
The principal components are obtained by maximising the variance-covariance matrix of the data, finding
eigenvalue of the variance-covariance matrix or using singular value decomposition when the number of vari-
ables is very large. The data are usually centered, and sometimes scaled. Missing values are not allowed,
unless using the NIPALS (nonlinear iterative partial least squares 3) algorithm which also enables an esti-
mation of the missing values.
The first PC is defined as the linear combination of the original variables that explains the greatest amount
of variation. The second PC is then defined as the linear combination of the original variables that accounts
for the greatest amount of the remaining variation subject of being orthogonal (uncorrelated) to the first
component. Subsequent components are defined likewise for the other PCA dimensions. The user must
therefore keep in mind how much information is explained by the first PCs as these are used to graphically
represent the PCA outputs.
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Figure 4.3: Principal Component Analysis of the yeast data set: barplot of the explained variance on each
PC. This output is useful to choose the number of PCs to retain in the PCA analysis

Choosing the PCA dimension. We can obtain as many dimensions (i.e. number of PCs) as the number
of variables. However, the goal is to reduce the complexity of the data and therefore summarize the data in
fewer underlying dimension.
Fig. 4.3 displays the barplot of the eigenvalues associated with each PC . One criterion to select the number
of PCs to retain in the analysis is to find the spot where the smooth decrease of the eigenvalues appears to
level o↵ to the right of the plot (i.e. when the ‘elbow’ appears). These eigenvalues correspond to the amount
of variance explained by the components. Another criterion is the clarity of the final configuration (see next

2Joli↵e (2002), ’Principal Component Analysis’, Springer-Verlag.
3Wold (1987), ’Principal Component Analysis’, Chemometrics and Intelligent Laboratory Systems 2: 37-52
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section). All of this is highly subjective and the reader must keep in mind that visualization becomes di�cult
above 3 dimensions.
Fig. 4.3 suggests that two PCs might be satisfactory to visualise most information from the yeast data.
A usual output that can be obtained using statistical softwares is the cumulative percentage of explained
variance (or information): in the yeast data, two PCs explained 54.72% of the total variance, and three PCs
explained 60.45% of the total variance.
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Figure 4.4: Principal Component Analysis of the yeast study and representation of the samples on the
first two principal components (denoted ‘Dimension 1’ and ‘Dimension 2’). Each dot represents a sample.
Anaerobic and aerobic conditions are separated on the first PC.

Graphical outputs. PCA is an extremely valuable visualization tool to explore a dataset. It can reveal
the discriminatory structure, as well as experimental bias in the data. Two types of graphical outputs can
be obtained in PCA:

• Sample representation can be obtained by plotting the principal components to observe the similarities
between the samples which account for most variation, but also to give a ‘meaning’ to the PCs. For
example, in Figure 4.4, the first PC tends to discriminate anaerobic vs. aerobic conditions, whereas the
second PC tends to discriminate the wild type aerobic vs. the other conditions. Remark that as noted
above, only 2 PCs might be satisfactory enough to summarize most of the information from these data.

• A biplot allows to graphically display both samples and variables. Samples are displayed as dots while
variables are usually displayed as vectors. If the data are centered and scaled, the cosine angle between
the variable vector and the PC indicates the correlation coe�cient between the variable and the PC.
This is therefore a useful way to give a meaning to each PC. For example, Fig. 4.5 allows to identify
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Figure 4.5: Biplot from the PCA analysis on the yeast data, simultaneous representation of the samples
(dots) and variables (vectors) on the first 2 PCs. Clusters of metabolites correlated with the biological
conditions can be identified.

which metabolites are highly correlated (negatively or positively) to the first and second PCs. The
metabolites represented with long arrows and highly correlated with the principal components are the
ones that explain most of the variation between the di↵erent conditions. For example the group of
metabolites pointing towards MT-AER are highly expressed in this group, but under expressed in the
anaerobic group.

Remark 13 Note that using a smaller number of preselected metabolites (i.e. removing noise) may improve
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the quality of such graphical outputs.

4.5 K-means
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Figure 4.6: K-means clustering of the yeast data set and representation of the samples on the first two PCs
components, for 3 clusters (top) and 4 clusters (bottom). Each dot represents a sample.

While hierarchical clustering and PCA do not require to specify a fixed number of clusters, another
partitioning clustering method that does so is the k� means approach4 which partitions the data into k

clusters. The choice of k is completely subjective.

The grouping is done by minimizing the sum of squares of distances between data and the corre-
sponding cluster centroid. The k-means algorithm will not necessarily find the global optimum solution and
is sensitive to the initial randomly selected cluster centres. In step 1 in the algorithm described below, a
di↵erent initial location of the cluster centroids can result in a di↵erent final partition. It is advisable to
use several di↵erent starting points, generating several partitions. The k� means algorithm also makes the
assumption that clusters are spherical and of similar size. Despite these limitations, the algorithm is used

4MacQueen (1967). ’Some Methods for classification and Analysis of Multivariate Observations’. Proceedings of 5th Berkeley
Symposium on Mathematical Statistics and Probability.
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fairly frequently as a result of its ease of implementation and fast convergence. Depending on the data set,
it might work well or fail on other data sets.

Description of the K-means algorithm.

1. Place k points into the space represented by the objects (the samples) that are being clustered. These
points represent the initial set of centers.

2. Assign each object to the group that has the closest center.

3. When all objects have been assigned, calculate the means of each feature for the objects in each cluster.
This mean vector becomes the new center for that cluster.

4. Repeat Steps 2 and 3 until the centers no longer move.

There is no general theoretical solution to find the optimal number of clusters for any given data set.
A simple approach is to compare the results of multiple runs with di↵erent k classes and choose the best one
according to a given criterion, such as Bayesian information criterion (BIC) or Akaike information criterion
(AIC), or a visual assessment. Figures 4.6 show that k = 3 seemed to be more appropriate than k = 4,
even though there are 4 real classes. The k-means algorithm was successful at grouping together WT-AER,
ANA and MT-AER conditions (note that in order to visualise the data, they were first summarized in 2
dimensions using PCA). A shortcoming of k-means is that the clusters need not be nested within the three
clusters. Therefore, hierarchical clustering described below might sometimes be preferable.

4.6 Summary

In this Chapter, we have seen that there are di↵erent ways of measuring the similarity between gene expression
profiles. The distance measure that we use, for example, can a↵ect the results.
Hierarchical clustering can be used to identify related genes or samples and portray them using dendrograms.
Di↵erent distances and linkage methods will produce di↵erent results.
PCA is a dimension reduction technique and provides a good way to visualise the data, using sample and
variable plots together (biplot).
K-means is also a well known clustering methodology that can be used on large scale data and requires the
specification of a number of clusters.
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Appendix A

Statistical tables

A.1 Binomial Table

Example of table of the binomial cumulative probability distribution
function.

This table gives the cumulative distribution function (c.d.f) of the binomial distribution, i.e. the distribution of the
number of successes in n independent trials of an experiment which leads to a success with probability p. The c.d.f. is

P(X  k) =
kX

i=0

P(X = i)

Since this table only cover p  0.5, the roles of successes and failures need to be reversed for p > 0.5 (see Exercise 15).

n k p 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
10 0 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010

1 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0233 0.0107
2 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547
3 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1719
4 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770
5 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230
6 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281
7 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453
8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9893
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
11 0 0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0004

1 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 0.0059
2 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0652 0.0327
3 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133
4 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744
5 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5000
6 1.0000 0.9997 0.9980 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256
7 1.0000 1.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867
8 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.9941 0.9852 0.9673
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9978 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 0 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002
1 0.6590 0.4435 0.2749 0.1584 0.0850 0.0424 0.0196 0.0083 0.0032
2 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.0834 0.0421 0.0193
3 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730
4 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938
5 0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872
6 0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128
7 1.0000 0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062
8 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.9270
9 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9968
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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A.2 Statistical table for a Normal Standard Distribution
This table gives P(Z  z) where Z ⇠ N (0, 1).

Normal cumulative distribution function
second decimal place of z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000



A.3 Statistical table for Student t-test
Percentage points of Student’s t distribution (right-tail probability ↵)

df 60.0%66.7%75.0%80.0%87.5%90.0%95.0% 97.5% 99.0% 99.5% 99.9%

1 0.325 0.577 1.000 1.376 2.414 3.078 6.314 12.706 31.821 63.657 318.31
2 0.289 0.500 0.816 1.061 1.604 1.886 2.920 4.303 6.965 9.925 22.327
3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215
4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173
5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893
6 0.265 0.453 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208
7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785
8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501
9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297

10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144
11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025
12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930
13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852
14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787
15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733
16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686
17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646
18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610
19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579
20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552
21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527
22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505
23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485
24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467
25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450
26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435
27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421
28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408
29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396
30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385
35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340
40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307
45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281
50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261
55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245
60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232
1 0.253 0.431 0.674 0.842 1.150 1.282 1.645 1.960 2.326 2.576 3.090

Remark 14 For two-tailed tests, use value in column headed by ↵/2
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