
Programming with Applications in

an introduction

 Kim-Anh Le Cao & Peter Bailey
 University of Queensland

Contents

I Introduction to R 3

1 Introduction 5

1.1 R, what is it? . 5
1.2 Help resources on the Internet . 5
1.3 Graphical User Interface (GUI) . 5
1.4 How is this document organised? . 6
1.5 R programming . 6

1.5.1 Object Oriented Programming . 6
1.5.2 Functional programming . 6

1.6 Getting started . 7
1.6.1 Running R . 7
1.6.2 Starting R . 7

1.7 Getting help . 7
1.7.1 The help() function . 7
1.7.2 When you do not really know what you are looking for 8
1.7.3 Help for other topics . 8

1.8 Functions in R . 8
1.9 Packages . 9

1.9.1 Download a package from the Web. 9
1.9.2 Install a package manually. 9

1.10 Shutting down . 9
1.11 One important tip . 10

2 Data structure 11

2.1 Introduction to data structure . 11
2.2 Scalar . 13
2.3 Vector . 13
2.4 Matrix . 15

II Graphical outputs in R 17

3 Introduction to graphics in R 19

3.1 Introduction . 19
3.1.1 Saving graph to file . 19

3.2 plot(), the workhorse for R Base graphics . 19
3.2.1 First example . 19
3.2.2 Changing the shape of points and their color . 20
3.2.3 Other useful arguments . 20
3.2.4 Adding lines . 21
3.2.5 Adding a legend . 21
3.2.6 Dividing the graphic device window into panels . 21

1

4 A first microarray example 23

4.1 Load the data . 23
4.2 The CCND3 Cyclin D3 gene in Golub study . 23
4.3 Comparing ALL patients to AML patients using factors . 24
4.4 Handling matrices . 24

5 Plotting functions 25

5.1 Scatter plots . 25
5.2 Strip chart . 25
5.3 Histogram . 25
5.4 Boxplot (box-and-whiskers plot) . 25
5.5 Quantile-Quantile plot . 26

6 Hypothesis testing 27

6.1 The T-distribution, a reminder . 27
6.2 One Sample t-test . 27
6.3 Two Sample t-test with unequal variance . 28
6.4 Two sample t-test with equal variances . 29
6.5 F-test on equal variances . 29
6.6 Normality tests . 30
6.7 �2 test on Breast Cancer data . 30
6.8 One-way analysis of variance . 30

7 Clustering and visualisation 33

7.1 Distances and linkage methods . 33
7.2 Hierarchical clustering . 34
7.3 Principal Component Analysis . 37
7.4 K-means . 38

2

Part I

Introduction to R

3

At the end of this introductory part, you should be able to:

• Have a basic understanding of the R philosophy and how it works,

• Be able to find help on any R function and command,

• Use vector-based operations instead of fastidious loops to speed computations,

• Understand the di↵erent data structures in R,

• Appreciate the following code:
knowledge = apply(theory, 1, sum)

4

Chapter 1

Introduction

1.1 R, what is it?

R is a scripting language for statistical data manipulation and analysis. It has become popular because it is
an open software (free) and because more people a contributing to it by submitting packages or libraries.

What are R and CRAN? (extract from www.http://cran.r-project.org/)

R is ‘GNU S’, a freely available language and environment for statistical computing and graphics
which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling,
statistical tests, time series analysis, classification, clustering, etc. Please consult the R project
homepage (www. r-project. org/) for further information.

CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of
code and documentation for R. Please use the CRAN mirror nearest to you to minimize network load.

1.2 Help resources on the Internet

There are many excellent resources on R on the Internet. Amongst them:

• The RSeek search engine: http://www.rseek.org/

• The R projects’ manuals are available from the R home page: http://www.r-project.org/ (click
Manual). They can be sometimes a bit overwhelming.

• I sometimes find Quick-R useful for basics and advances statistics http://www.statmethods.net/

• You can post your questions to the R list server ’r-help’ or browse through the old posts. I myself often
use this for specific issues/bugs I encounter.

1.3 Graphical User Interface (GUI)

Usually, R users submit commands to R by typing in a terminal window. Integrated Development Environ-
ments (IDE) are aimed towards programming. Free IDEs have been developed for R:

• RStudio, http://rstudio.org/ which I recommend

• StatET is based on Eclipse, http://www.walware.de/goto/statet

• ESS (Emacs Speaks Statistics) is an add-on to Emacs, http://ess.r-project.org/

5

1.4 How is this document organised?

This document will first give some basics about R programming, with a mix of examples and exercises, before
introducing specific R functions and techniques for data analysis and data mining.

Remark 1 Throughout the document, each R command will be preceeded by the prompt symbol >, which
is not part of the code. You should not type the sign> it when you are trying the code yourself.
The output will be preceeded by [1].
If the command is too long, it will appear as a continuation symbol + on the following line (you do do not

need to type the symbol + on your R terminal).
Note that several commands can be typed on the same line using the symbol ";".
Comments in the R code are preceeded by the # symbol. You do not need to type any comments,
unless for your own use.

Example

> myvector = c(1,4,2,3)
> myvector # my comment is: outputs the content of �myvector'. Below is the output:

[1] 1 4 2 3

Remark 2 The c stands for concatenate, as here, we are concatenating the values 1, 4, 2, 3. In fact, we are
concatenating 4 elementss in one vector.

1.5 R programming

1.5.1 Object Oriented Programming

R o↵ers a certain uniformity of access to data: a single function (like plot()) can be applied to di↵erent
types of inputs, which the function processes in the appropriate way. Such a function is called a generic
function (in C++ it is called ‘virtual function’). For example, we will see later that the plot() function can
be applied to a list of numbers, or to the output of a regression analysis, which represent various aspects of
the analysis. What it means from a user’s perspective is that there are fewer commands to remember!

1.5.2 Functional programming

R avoids explicit iterations (loops). This is a very important concept to remember: instead of coding loops,
we will exploit R’s functional features, which let us express iterative behaviour implicitly. The code is
run more e�ciently and it makes a huge timing di↵erence when dealing with large data sets such as those
generated by high-throughput experiments in Molecular Biology. For instance, to compute the mean of a
vector containing 6 values v= [1, 1, 2, 3, 4, 4],

> v = c(1, 1, 2, 3, 4, 4)
> v # outputs the content of the vector 'v'

[1] 1 1 2 3 4 4

> mean(v) # outputs the mean of the elements in the vector

[1] 2.5

The command mean(v) computes the mean of the vector v, instead of of summing of the elements one by
one and dividing the sum by 6 like this (you do not need to run the command line, but try appreciate the
length of this code):

6

> sum.vect = 0 # initialise for first element
> for(i in 1:6){ # create a 'for' loop
+ sum.vect = sum.vect + v[i]
+ }
> mean.vect = sum.vect/6
> mean.vect

[1] 2.5

Another example of R functional features is the following:

> sum(v)/length(v) # sum of all elements of v / size of v

[1] 2.5

1.6 Getting started

1.6.1 Running R

R operates in two modes: interactive and batch. In this course we will use interactive mode, which is the
most typical where we type in commands, R displays the results, then we type in more commands etc. The
batch mode does not require interaction with the user. It is useful for production jobs as the process is
automated. Keep the batch mode in mind when you have large data set to process with high-performance
computing and you know that the job will run for a long time.

1.6.2 Starting R

R has the notion of your current working directory. This will be the directory from which you launch R, if
you are using Linux or Mac. In Windows, it might be your Document folder. Check your current directory
by typing the command:

> getwd()

[1] "/Users/k.lecao/Teaching/STAT7174/Prac/prac-R"

If you are using an IDE, you can change your working directory.
Otherwise you can use the command

> setwd("~/Teaching/STAT7174/Prac/prac-R/")

to set up your working directory.

1.7 Getting help

Besides the numerous resources available in Internet, as mentioned in Section 1.2, R is self-documenting.

1.7.1 The help() function

To get online help, invoke the function help(). For example on the boxplot function:

> help(boxplot)

or, alternatively with the shortcut ?:

> ?boxplot

Special characters must be quoted, for example on the < operator:

7

> ?"<"

or with the for in the loops:

> ?"for"

Much work has gone into making R self-documenting and each of the help entries comes with examples.
The function example() will run these examples in front of your very own eyes: However, because of this
self-documenting freedom, you can sometimes find the explanations of some functions very obscure ... this
is, from my point of view, one of the major drawback of R.

1.7.2 When you do not really know what you are looking for

The help.search() function does a Google-search type through R’s documentation. For example we want
to generate a box-and-whiskers plot: help.search("box")
or using the shortcut "??"

> ??"box"

will produce a response containing
graphics::boxplot Box Plots

which means we should have a look at the function boxplot() in the package graphics.

1.7.3 Help for other topics

We can also get some help about an entire package:

> help(package = graphics)

and also for some general topics:

> ?Math

Help on topic ‘Math’ was found in the following packages:

Package Library

methods /Library/Frameworks/R.framework/Versions/2.15/Resources/library

base /Library/Frameworks/R.framework/Resources/library

Using the first match ...

1.8 Functions in R

R programming consist of writing functions. A function is a group of instructions that takes inputs (the
arguments), uses them to compute other values and returns a result.
A function is always called with arguments in round brackets. With no arguments, we will still need to write
the round brackets, otherwise it is the actual code of the function that appears:

> round(3.4)

[1] 3

has the argument “3.4” and returns the nearest integer 3.

> ls()

[1] "i" "mean.vect" "myvector" "sum.vect" "v"

8

lists the objects in the working environment, while

> ls

outputs the whole R code of the function!

Many functions in R use default arguments. For example the function round() takes two arguments: x
and digits = 0. The latter is a default argument. We will come back to it later in the course but it is
important when using any R function to be aware of the values of these default arguments (detailed in the
help documentation, see Section 1.7).
Tip: When using Rstudio, “tabbing” inside the parentheses function will display the arguments.

1.9 Packages

One of the major strengths in R are the thousands of user-written packages available through the Com-
prehensive R Archive Network (CRAN, http://www.r-project.org/. As of March 2011, there were 4,300
packages available from the CRAN. A package is a collection of functions, which allow specialized statistical
techniques, graphical devices, import/export capabilities, reporting tools, etc. These packages are developed
primarily in R, and sometimes in Java, C and Fortran.
Some packages are loaded automatically when you start R (such as the base package). But to save memory
and time, R does not load all available packages automatically.

Remark. The term library is often used in place of package in the R community.

Load a package from your hard drive. You can load a package that is in your R installation but not
loaded into memory yet using the library() function. For example for the package MASS:

> library(MASS)

Any function within this package will now be ready to be used.

1.9.1 Download a package from the Web.

The package you want to use may not be in your R installation. You can install it automatically from the
CRAN repository with the install.package() function, or, using a GUI or IDE by clicking on ”Install
package” (choose your nearest mirror).

1.9.2 Install a package manually.

You may not have the rights on your machine, or you may want to make modifications to an existing package
to create your own package. You can install a package by hand using some batch command in Linux or Mac.
This is not in the scope of this course but be aware of the possibility.

1.10 Shutting down

R can save all or part of a session as a record of what you did, to an output file. If you answer ”yes” to the
question ”Save workspace image?” when you quit R by typing q().

R will save all the objects you created in that session in a file named .RData located in your R directory.
It will restore the objects the objects in the next session if you load that same workspace: load(".RData")
or through the IDE you are using.

Tip: sometimes save my objects in a middle of a session, just in case my computer crashes with the
command save.image().

9

You can also save your R workspace with a specific name, for example: save.image(’prac0.RData’)

and load it next session with load(’prac0.RData’).

1.11 One important tip

Once the R software has shut down (or worse, crashed), the workspace might have been saved beforehand,
so you will keep the R objects in memory. However, all the command lines will be gone. It is best to use a
text editor, preferably the one embedded in the R software (file -> New -> R script) that you can save as
an ‘.R’ file (for example ’practical0.R’).
First type your command line in your text editor, then copy paste it in the R console to excute (or use the
’apple key + enter’ in a mac, or ‘Ctrl + enter’ on Windows with the cursor pointing on the command line,
or use the Run button). It might sound tedious at the start to use a command editor but it will

be useful later, especially for debugging and typing high level R commands.

Note: the .RHistory can be saved using the command line savehistory(), but it will display every
possible (possibly wrong) command lines that have been typed during the session.

10

Chapter 2

Data structure

2.1 Introduction to data structure

R has a variety of data structures.

Vector. The vector type is the fundamental data type in R. The elements of a vector must all have the
same mode (data type) of the following type:

• Scalars are individual numbers, they actually are one-element vectors

> x = 10 # example of scalar
> x

[1] 10

> mode(x)

[1] "numeric"

• Character strings are single-element vectors of mode ”character”

> y = "hello" # example of character
> y

[1] "hello"

> mode(y)

[1] "character"

Matrix. A matrix is a rectangular array of numbers (technically a vector with a number of rows and a
number of colums)

> # first example
> M = matrix(data = 0, nrow = 2, ncol = 3)
> M # a matrix with 0 values, 2 rows and 3 columns

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

> # second example
> M = matrix(c(1,2,3,4,5,6), nrow = 2, ncol =3)
> M

11

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Matrices are indexed using double scripting which start from 1:

> M[1,2] # outputs the element from the first row and the second column

[1] 3

We can extract submatrices from a matrix

> M[1,] # extracts the first row

[1] 1 3 5

> M[,2] # extracts the second column

[1] 3 4

Arrays. Arrays are matrices with more than 2 dimensions. In Section ?? we will give an example of
three-dimensional arrays.

Lists. lists contain items of di↵erent data types (similar to a C struct in C++).

> x = list(u=2, v = "hello")
> x

$u

[1] 2

$v

[1] "hello"

Elements in a list can be accessed via the $ sign:

> x$u

[1] 2

> x$v

[1] "hello"

Data frame. A data frame is a data set that contains data of di↵erent modes (i.e. di↵erent types). A
data frame is a list with each component of a list being a vector corresponding to a column in the data.

> D = data.frame(list(name = c('patient 1', 'patient 2', 'patient 3'),
+ age = c(34, 21, 56), tumor = c('yes', 'no', 'yes')))
> D

name age tumor

1 patient 1 34 yes

2 patient 2 21 no

3 patient 3 56 yes

> D$name

[1] patient 1 patient 2 patient 3

Levels: patient 1 patient 2 patient 3

Typically, data frames are created by reading in a data set from a file or a database.

12

Classes. Since R is an object oriented language, objects are instances of classes. This concept is a bit
more abstract than data types and we will come back to it later in the course.

Remark 3 You will notice in the following code that we can use the sign ‘<-’ instead of ‘=’. <- is the
standard assignment operator in R (i.e. I assign to my object a, the value 10: a <= 10). The sign ‘=’ can
also be used.

2.2 Scalar

> 2+2
> exp(10)
> a = log(2)
> b <- cos(10) #Remark: '<-' is equivalent to '='. In fact,
> # '->' is also possible with the variable name following the symbol.
> a+b
> a
> b
> 2==3
> b = 2 < 3
> ls()
> rm(a)
> ls()
> a="foo"

Exercise 1 . Type each of the above command lines one by one and comment your script if needed. Then
answer the questions below.

1. Identify the mode of each scalar: integer, real, boolean (logical), character.

2. What does the ls() function do?

3. What does the rm() function do?

2.3 Vector

• These following commands illustrate how to create a vector, either by indicating the values in c(), or
with a sequence seq() or with a repetition rep().

• Elements in a vector are of the same type (numeric, character)

• To extract an element from a vector we use the operator [].

• You can also name an element of a vector (see example below with f).

• The notation NA stands for (Not Available) and indicates missing values

> d = c(2,3,5,8,4,6)
> is.vector(d)
> c(2,5,"foo")
> 1:10
> seq(from=1,to=20,by=2)
> seq(1,20,by=5)
> seq(1,20,length=5)
> rep(5,times=10)

13

> rep(c(1,2),3)
> rep(c(1,2),each=3)
> e = rep(1,10)
> d[2]
> d[2:3]
> d[-(1:2)]
> d[3]=NA
> d
> summary(d)
> is.na(d)
> help(NA)
> any(is.na(d))
> all(is.na(d))
> f = c(a=12,b=26,c=32,d=41)
> f
> names(f)
> f["a"]
> names(f)=c("a1","a2","a3","a4")
> f >30 # (1)
> f[f > 30] # (2)
> which(f>30)
> f[2] = 22
> f+100
> f+d # (3)
> cos(f)
> length(f)
> sort(d)

Exercise 2 . Type each of the above command lines one by one and comment your script if needed. Then
answer the questions below.

1. Which are the di↵erent arguments that we can use in the function seq()? Give some examples.

2. Which are the di↵erent arguments that we can use in the function rep()? Give some examples.

3. Describe the function unique()? Give an example.

4. What is the use of the functions any() and all()?

5. What is the di↵erence between the two commands in (2).

6. What is happening with (3) f+d ?

Part of first Quizz, exercise 1 This is an exercise as part of the quizz.

1. Create a vector object called ‘marks’, which records the marks of the students:[1 pt]

Martin Joey Stephany Allan Sophie Lila
80 75 15 55 60 95

14

2. Check the size of the vector. [1 pt]

3. Don’t forget to name each element of the vector with the students name. [1 pt]

4. Who are the students who pass the course (> 50)? [1 pt]

5. What is the average mark of the students? What is the maximum and the minimum mark? [1 pt]

6. Who has the maximum mark (use R commands)? [1 pt]

2.4 Matrix

• Similar to vectors, elements of a matrix are of the same type.

• Some arguments in a function can be shortened (the number of columns ncol can be written nc for
example).

> A = matrix(1:15,ncol=5)
> A
> B = matrix(1:15,nc=5,byrow=T)
> B2=B
> B2[1,1]="foo"
> B2
> cbind(A,B)
> rbind(A,B)
> A[1,3]
> A[,2]
> B[2,]
> A[1:3,2:4]
> g = seq(0,1,length=20)
> C = matrix(g,nrow=4)
> C[C[,1] > 0.1,] # (1)
> D = matrix(runif(16),nc=4)
> D > 0.5 # (2)
> D[D[,1] > 0.5,2] # (2')
> A+B
> A*B
> A[1:2,1:2] %*% B[1:2,1:3]
> apply(A,2,sum) # (3)
> apply(D,1,max)

Exercise 3 . Type each of the above command lines one by one and comment your script if needed. Then
answer the questions below.

1. What is the di↵erence between the two commands in (2) and (2’).

2. Explain (3)?

15

Part of first Quizz, exercise 2 . Answer the questions below as part of the exercise for Quizz 1.

1. We record the pulse rate of 20 persons who have either a drink of ca↵einated or deca↵einated cola.
Create the following matrix ‘pulse.rate’: [1 pt]

Ca↵einated 87 92 96 97 78 78 94 90 80 96
Deca↵einated 100 75 97 81 91 93 78 76 81 76

2. Using the command rownames, name the rows of your matrix. [1 pt]

3. Give the average pulse rate for each type of drink. [1 pt]

4. In the Ca↵einated group, how many persons have a pulse rate � 90? [1 pt]

16

Part II

Graphical outputs in R

17

At the end of this introductory part, you should be able to:

• Understand the basics of using R’s base graphics packages,

• Be able to handle data matrices, use subscripts and extract submatrices,

• Be able to handle factors,

• Be able to handle a small microarray data set,

• Be able to represent data with graphics in R

18

Chapter 3

Introduction to graphics in R

3.1 Introduction

R has a very rich set of graphics facilities. For example you can browse the R Graph Gallery: http:

//gallery.r-enthusiasts.com/

We will first have a look at the foundational function for creating graphcs using plot(). We will then explore
how to build a graph, adding lines and attaching a legend. We will deal with plots with two variables, a
single sample, multivariate plots and special plots for particular purposes.

3.1.1 Saving graph to file

There are di↵erent ways of saving a graph to a file

• Standard R GUI, right-click on the graph and save

• Rstudio: click on the buttons on top of the plots

• In a Linux environment:

> pdf('mygraph.pdf')
> plot(cars)
> dev.off()

null device

1

Note that in the latter case, several format are available, such as jpeg(), bmp(), png(), tiff, postcript()

... (see the help of these functions). The command dev.off() enables to close the R graphic device.

3.2 plot(), the workhorse for R Base graphics

3.2.1 First example

Suppose we have two vectors x = [1, 2, 3] and y = [1, 2, 4], interpreted as a set of pairs in the (x, y) plane.

> x = c(1,2,3)
> y = c(1,2,4)
> plot(x, y)

19

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

x

y

Figure 3.1: First simple example of scatterplot.

3.2.2 Changing the shape of points and their color

The empty circles can be changed with the argument pch, and the color by the argument col (see Figure
3.4(a)):

> plot(x, y, pch = 16, col = 'blue')

All point character symbols are represented in Figure 3.2. The function colors() lists all the possible
657 colors.

Figure 3.2: Point character symbols.

3.2.3 Other useful arguments

The ranges of the x and y axes can be set up with a vector with 2 elements (start and finish) using the
arguments xlim and ylim. The labels of the axes can also be modified (see Figure 3.4(b)):

> plot(x, y, pch = 16, col = 'blue', xlim = c(0,4), ylim = c(0,5),
+ xlab = 'the label of x', ylab = 'the label of y')

20

3.2.4 Adding lines

After the call to plot(), the call to the function abline() will add a line to the current graph. Any straight
vertical, horizontal lines or lines with intercept and slope can be added (see also Figures 3.3 and 3.4(a)).

> plot(x, y, pch = 16, col = 'blue', xlim = c(0,4), ylim = c(0,5),
+ xlab = 'the label of x', ylab = 'the label of y')
> abline(h = 2.5, col = 'green') #horizontal line
> abline(v = 2, col = 'red') #vertical line
> abline(2,1) #line fitted on the equation y = 2 + 1 * x

0 1 2 3 4

0
1

2
3

4
5

the label of x

th
e

la
be

l o
f y

Figure 3.3: Example adding lines.

3.2.5 Adding a legend

Legend can be added to a graph (see also example(legend), amd Figure 3.4(d)).

> plot(x, y, pch = c(16, 17, 18), col = c('blue', 'red', 'green'))
> legend('bottomright', pch = c(16, 17, 18), col = c('blue', 'red', 'green'),
+ legend = c('small', 'medium', 'large'))

3.2.6 Dividing the graphic device window into panels

This is useful to represent several graphics on the same window, using the command par(mfrow=c(nr,nc))

where nr is the number of rows and nc the number of columns to be divided. Titles can also be added.

> # divide into panels
> par(mfrow=c(2,2)) # here: 2 rows and 2 columns
> # --- plot 1
> plot(x, y, pch = 16, col = 'blue')
> title(main = '(a)')
> # --- plot 2
> plot(x, y, pch = 16, col = 'blue', xlim = c(0,4), ylim = c(0,5),
+ xlab = 'the label of x', ylab = 'the label of y')

21

> title(main = '(b)')
> # --- plot 3
> plot(x, y, pch = 16, col = 'blue', xlim = c(0,4), ylim = c(0,5),
+ xlab = 'the label of x', ylab = 'the label of y')
> abline(h = 2.5, col = 'green') #horizontal line
> abline(v = 1, col = 'red') #vertical line
> title(main = '(c)')
> # --- plot 4
> plot(x, y, pch = c(16, 17, 18), col = c('blue', 'red', 'green'))
> legend('bottomright', pch = c(16, 17, 18), col = c('blue', 'red', 'green'),
+ legend = c('small', 'medium', 'large'))
> title(main = '(d)')
> par(mfrow=c(1,1)) # pack to 1 panel

1.0 1.5 2.0 2.5 3.0

1.
0

2.
0

3.
0

4.
0

x

y

(a)

0 1 2 3 4

0
1

2
3

4
5

the label of x

th
e

la
be

l o
f y

(b)

0 1 2 3 4

0
1

2
3

4
5

the label of x

th
e

la
be

l o
f y

(c)

1.0 1.5 2.0 2.5 3.0

1.
0

2.
0

3.
0

4.
0

x

y

small
medium
large

(d)

Figure 3.4: Examples of plots. (a): changing shape and color, (b): changing range of axes and labels, (c):
adding lines, (d): adding legend.

22

Chapter 4

A first microarray example

At the end of this practical you should be able:

1. to extract gene expression values from a matrix;

2. to generate and use factors to group categorical data;

3. to use the functions apply and tapply to calculate descriptive statistics on matrices.

4.1 Load the data

The gene expression data collected by Golub et al. (1999) are among the most classical in bioinformatics. The
data relates to Leukemia. We will concentrate today on a subset of this data, refered to herein as ‘golub100’,
which is provided in the R data file golub.RData. golub100 is a matrix consisting of 100 genes (rows) and
their respective expression values in 38 leukemia patients (columns). Twenty seven patients are diagnosed
as having acute lymphoblastic leukemia (ALL) and eleven as having acute myeloid leukemia (AML).

> # 1. Empty the previous workspace
> # (the following removes (almost) everything in the working environment.
> # You will get no warning, so don't do this unless you are really sure).=
> rm(list = ls()) # if you want to can delete all previous workspace
> # 2. Then load the data (saved into a Folder called 'Data')
> load('Data/Golub.RData')
> ls() # lists current objects in the current workspace
> dim(golub100) #check the dimension of the data
> head(golub100) # outputs the first elements of the data

4.2 The CCND3 Cyclin D3 gene in Golub study

We shall first concentrate on the expression values of the gene “CCND3 Cyclin D3”. Golub et al. demon-
strated that the gene cyclin D3 is di↵erentially expressed between ALL and AML tumours.

How can we extract expression values from the golub100 matrix corresponding to those of Cyclin D3
(CCND3)?

Exercise 4 Comment the following R code.

> ccnd3 <- grep("CCND3", rownames(golub100))
> golub100[ccnd3,]
> golub100[95,]

Exercise 5 Extract values for the gene CCND3 for patients diagnosed with ALL only.

23

4.3 Comparing ALL patients to AML patients using factors

Objects of type factor can be used to group categorical data. For example, we can use an object of type
factor to categorize the golub100 data on the basis of tumour class i.e. AML versus AML. The tumour
class is given by the column names of the matrix golub100. We can use the column names in the function
as.factor() to create the object gol.factor as follows.

> ?factor
> colnames(golub100)
> gol.factor <- as.factor(colnames(golub100))
> gol.factor
> summary(gol.factor)

Once we have created gol.factor we can extract expression data specific to the ”AML” and ”ALL”
tumour classes as follows.

> golub.aml <- golub100[, gol.factor=="AML"]
> golub.all <- golub100[, gol.factor=="ALL"]

4.4 Handling matrices

How do we perform calculations on matrices? For instance, how would you calculate the sum, mean, median
or standard deviation for the AML or ALL samples. To perform computations on matrices, R provides the
helper functions apply() and tapply().

> ?apply
> mean.aml <- apply(golub100[, gol.factor=="AML"], 1, mean)
> mean.amlvsall <- tapply(golub100[ccnd3,], gol.factor, mean)

In the first example we have used the apply function to calculate the mean of all genes from tumours
diagnosed as AML. The numerical argument 1 in the apply function designates that we are intereted in
calculting the mean on the rows or genes of the matrix. If we wanted to calculate the mean expression values
for the AML samples (the columns) we would use the numerical argument 2.

In the second example we have used the tapply() function to calculate the mean expression values for
the gene CCND3 in tumours diagnosed as either AML or ALL given a factor. Note that we have used the
gol.factor object as the second argument to tapply().

Exercise 6 Give the median, sd and IQR of the ALL expression values using the apply() function. (Hint:
?median(), ?sd(), ?IQR()).
Give the median, sd and IQR of the gene expression values for the gene CCND3 for both the ALL and AML
tumours using the tapply() function.

24

Chapter 5

Plotting functions

A few essential methods are given to display and visualize data. It quickly answers questions like: Does the
distribution of my data resemble that of a bell-shaped curve? Are there di↵erences between gene expression
values taken from two groups of patients?

At the end of this pratical you should be able to display a series of descriptive statistics using the R’s
base graphics packages.

In the following, we will use the golub100 data from chapter 4.

5.1 Scatter plots

> plot(golub100[1,], golub100[92,])
> plot(golub100[1,], golub100[18,])

Exercise 7 What do you observe? Are the expression levels of the genes positively or negatively correlated?

5.2 Strip chart

> stripchart(golub100[ccnd3,] ~ gol.factor, method="jitter", vertical=TRUE)

Exercise 8 What do you observe?

5.3 Histogram

> par(mfrow=c(2,2)) # divide graphics window into 2 rows and 2 columns
> hist(golub100[ccnd3,])
> hist(golub100[ccnd3, gol.factor=="ALL"])
> hist(golub100[ccnd3, gol.factor=="AML"])
> par(mfrow=c(1,1)) # graphics window back to normal

Exercise 9 Comment on these histograms.

5.4 Boxplot (box-and-whiskers plot)

A popular method to display data is by drawing a box around the first and the third quartile (a bold line
segment for the median), and the smaller line segments (whiskers) for the smallest and the largest data
values. Such a data display is known as a box-and-whisker plot.

25

> boxplot(golub100[ccnd3,])
> boxplot(golub100[ccnd3,] ~ gol.factor)

Exercise 10 What do you observe? What can you say about the expression levels of CCND3?

Part of first Assignment, exercise 1 . Box-and-wiskers plot of persons of Golub et al. (1999) data.

1. Use boxplot(golub100) to produce a box-and-whiskers plot for each column (patient). Make a
screen shot to save it in a word processor. Describe what you see. Are the medians of similar size?
Is the inter quartile range more or less equal. Are there outliers?

2. Compute the mean and medians of the patients. What do you observe?

5.5 Quantile-Quantile plot

A method to visualize the distribution of gene expression values is by the so-called quantile-quantile (Q-Q)
plot. In such a plot the quantiles of the gene expression values are displayed against the corresponding quan-
tiles of the normal (bell-shaped) distribution. A straight line is added representing points which correspond
exactly to the quantiles of the normal distribution. By observing the extent in which the points appear on
the line, it can be evaluated to what degree the data are normally distributed. That is, the closer the gene
expression values appear to the line, the more likely it is that the data are normally distributed.

> qqnorm(golub100[ccnd3, gol.factor=="ALL"])
> qqline(golub100[ccnd3, gol.factor=="ALL"])

Exercise 11 What do you observe? What conclusions can you make regarding the normality of the expres-
sion values?

26

Chapter 6

Hypothesis testing

At the end of this practical you should be able to:

1. Test a null hypothesis against an alternative hypothesis using the in-built function t.test();

2. Be able to apply the Chi-Squared test on categorical data; and

3. Be able to apply an analysis of variance (ANOVA) to a set of data

Remark 4 A hypothesis is one-sided if it proposes that a parameter is greater than some value or less than
some value; it is two-sided if it simply says the parameter is not equal to some value.

6.1 The T-distribution, a reminder

This is the R code to obtain Figure 6.1:

> df=6-1
> f<-function(x){dt(x, df)}
> plot(f,-4,4,xlab="x-axis",ylab="T Density dt(x)")
> ci <- c(qt(0.025, df), qt(0.975, df))
> x<-seq(-4,ci[1],0.01)
> y<-seq(ci[2],4,0.01)
> polygon(c(ci[1],x,ci[1]), c(0,0,f(x)), col="red")
> polygon(c(ci[2],y,ci[2]), c(f(y),0,0), col="red")
> arrows(-3, 0.25,-3, 0.05)
> text(-3, 0.3, "Rejection Region")
> arrows(3, 0.25,3, 0.05)
> text(3, 0.3, "Rejection Region")
> arrows(0, 0.15,0, 0.05)
> text(0, 0.2, "Acceptance Region")

6.2 One Sample t-test

> boxplot(golub100[ccnd3,], main = 'CCND3 for all patients', col = 'grey')

The box-and-whiskers plot in Figure 6.2 suggests that the ALL gene expression values of CCND3 Cyclin
D3 are positive. We would like to test this.

Exercise 12 Formulate the null and alternative hypothesis that we would like to test.

> t.test(golub100[ccnd3, gol.factor=="ALL"], mu=0, alternative=c("greater"))

27

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

x−axis

T
D

en
si

ty
 d

t(x
)

Rejection Region Rejection Region

Acceptance Region

Figure 6.1: Acceptance and rejection regions in a t-test distribution.

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

CCND3 for all patients

Figure 6.2: Boxplot of CCDN3 for all patients.

The option mu provides a number indicating the true value of the mean (or di↵erence in means if you
are performing a two-sample test) under the null hypothesis. The option alternative is a character string
specifying the alternative hypothesis, and must be one of the following: "two.sided" (which is the default),
"greater" or "less" depending on whether the alternative hypothesis is that the mean is di↵erent than,
greater than or less than mu, respectively.

Exercise 13 Explain the R output and draw conclusions.

6.3 Two Sample t-test with unequal variance

Now, we display the boxplot for each group of patients:

28

> boxplot(golub100[ccnd3,]~gol.factor, main = 'CCND3 for the two groups of patients', col = 'grey')

ALL AML

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

CCND3 for the two groups of patients

Figure 6.3: Boxplot of CCDN3 for the two groups of patients.

Exercise 14 The Welsh’s t-test.

• What do these boxplots suggest regarding the di↵erence in the population means?

• Formulate the null and alternative hypotheses to be tested.

• Suggest a statistical test to test your hypothesis. Assess whether the test should be run with equal or
unequal variances (argument var.equal set to TRUE or FALSE).

• Once your run the test, specify the rejection region and draw conclusions.

> t.test(golub100[ccnd3,] ~ gol.factor, var.equal=FALSE)

6.4 Two sample t-test with equal variances

The null hypothesis for gene CCND3 Cyclin D3 that the mean of the ALL di↵ers from that of AML patients
can be tested by the two-sample t-test using the argument var.equal=TRUE.

> t.test(golub100[ccnd3,] ~ gol.factor, var.equal=TRUE)

Exercise 15 State the null hypothesis of this test, the statistical test used, the rejection region and draw
conclusions.

6.5 F-test on equal variances

The null hypothesis for gene CCND3 Cyclin D3 that the variance of the ALL patients equals that of the
AML patients can be tested by the built-in-function var.test(), as follows.

> var.test(golub100[ccnd3,] ~ gol.factor)

Exercise 16 State the null hypothesis of this test, the statistical test used, the rejection region and draw
conclusions.

29

6.6 Normality tests

To test the hypothesis that the ALL gene expression values of CCND3 Cyclin D3 from Golub et al. (1999)
are normally distributed, the Shapiro-Wilk test can be used as follows.

> shapiro.test(golub100[ccnd3, gol.factor=="ALL"])

Exercise 17 State the null hypothesis of this test, the statistical test used, the rejection region and draw
conclusions.

6.7 �2 test on Breast Cancer data

It has been hypothesised that breast cancer in women is caused in part by events that occur between the
age of menarche (i.e. the age when menstruation begins) and the age at first child birth. Specifically, it has
been hypthesised that the risk of breast cancer increases as the length of this time interval increases. An
international study was set up to test this hypothesis.
Women with at least one birth were arbitarily divided into 2 categories:

1. women whose age at first birth was 29; and

2. women whose age at first birth was � 30.

Control subjects were chosen from women of comparable age who were in hospital at the same time as the
subjects with breast cancer. However, the control subjects did not have breast cancer. All women were
asked about their age at first birth.
The following results were found among women with at least one birth: 683 out of 3220 (21.2%) with breast
cancer (case women) and 1498 out of 10245 (14.6%) without breast cancer (control women) had an age at
first birth � 30. How can we assess whether the di↵erence observed between the case women and the control
women is significant or simply due to chance?

2⇥ 2 Contingency tables and Chi-Square test:

> tab <- matrix(c(683, 2537, 1498, 8747), 2, byrow=TRUE)
> dimnames(tab) <- list(group=c("case", "control"), age=c(">=30", "<=29"))
> chisq.test(tab)

Exercise 18 State the null hypothesis of this test, the statistical test used, the rejection region and draw
conclusions.

6.8 One-way analysis of variance

We have seen that the t-test can be used to discover genes with di↵erent means in the population with
respect to two groups of patients. In some cases, however, when there are more than two groups of pa-
tients, the question arises how many genes are di↵erentially expressed between group means (experimental
e↵ect)? A technique making this possible is an analysis of variance. It is frequently applied in bioinformatics.

For this example we use the matrix ALLB123 which contains the expression values for B-cell ALL patients
in stages B1, B2, and B3 of the disease. We are interested in the expression of the SKI-like oncogene which
is identified by probe name ‘1866 g at’.

> x <- ALLB123["1866_g_at",]
> bt.factor
> summary(bt.factor)

Some useful graphical outputs can be plotted:

30

> par(mfrow=c(1,2)) #divide graphics window into 1 row 2 columns
> # 1. a strichart
> stripchart(x ~ bt.factor, vertical=T)
> title(main = '1866_g_at')
> # 2. a boxplot
> boxplot(x ~ bt.factor, main = '1866_g_at')
> par(mfrow=c(1,1)) # graphics window back to normal

B1 B2 B3

3.
5

4.
0

4.
5

5.
0

5.
5

x

1866_g_at

B1 B2 B3

3.
5

4.
0

4.
5

5.
0

5.
5

1866_g_at

The built-in-function aov() can be used to perform the analysis of variance.

> test = aov(x ~ bt.factor)
> summary(test)
> # summary(test) outputs a list with two elements, the first element [[1]] is the output table.
> # to extract the p-value:
> summary(test)[[1]][["Pr(>F)"]][1]

Exercise 19 Comment on the outputs above, state the null hypothesis of this test, the statistical test used,
the rejection region and draw conclusions.

31

Part of first Assignment, exercise 2 Hypothesis testing 1/2.

1. Gene selection. We are interested in the following list of candidate genes for the Golub study (you
will use the golub100 data from the practical):

list.gene = c(

"LYZ Lysozyme", "CTSD Cathepsin D (lysosomal aspartyl protease)",

"Clone 23721 mRNA sequence", "Neuromedin B mRNA",

"DHPS Deoxyhypusine synthase",

"GB DEF = (lambda) DNA for immunoglobin light chain",

"Leukotriene C4 synthase (LTC4S) gene", "KIAA0102 gene" ,

"Non-lens beta gamma-crystallin like protein (AIM1) mRNA, partial cds",

"CD24 signal transducer mRNA and 3' region")

(a) For each of these genes, perform a two-sample t-test values for which the ALL mean is greater
than the AML mean (test with unequal variances). You will formulate the null and alternative
hypotheses, the test statistic used (and the distribution of the test statistic, including the
number of degrees of freedom), the rejection region and draw your conclusion. (Advice: you
can create a vector called p.value which will store the p-values associated to the tests, and
name p.value using the function names).

(b) Report amongst these genes those that have a p-value < 0.01. We will refer to these genes
as ‘di↵erentially expressed’ genes.

(c) Illustrate these results by plotting these di↵erentially expressed genes using boxplots. Interpret
the boxplots.

Part of first Assignment, exercise 3 Hypothesis testing 2/2.

1. Gene CD33. Use the grep() function to find the index of the important gene CD33 among the
rownames of golub100. For each test below, formulate the null and alternative hypotheses, the test
statistic used (its value and the distribution of the test statistic, including the number of degrees
of freedom), the rejection region and draw your conclusion:

(a) Test the normality of the ALL and AML expression values1.

(b) Test for the equality of variances.

(c) Test for the equality of the means by an appropriate t-test.

(d) Is the experimental e↵ect strong?

32

Chapter 7

Clustering and visualisation

7.1 Distances and linkage methods

We will first have a look at a simple example to compare the e↵ect of di↵erent linkage methods. The
foodstuff data set measures the amount of energy, protein, calcium and iron in di↵erent types of food.
First, we need to read the data from a .txt format (you will need to point your R working directory to the
right location of the data file):

> food <- read.table("foodstuffs.txt", header=T, row.names= 1)

Since each variable (energy, protein etc...) does not use the same unit, we decide to scale the data by
dividing each variable column by its own standard deviation:

> # Let's first center and scale the data
> food.std = scale(food, center = TRUE, scale = TRUE)

In order to obtain a cluster, we first need to compute the distance (or measure of similarity), for example
with a Euclidian distance:

> # Calculating pairwise Euclidean distances between the (standardized) objects:
> dist.food <- dist(food.std)

Now we can use the hclust() function specifying a linkage method and plot the dendrogram:

> # Example with single linkage:
> food.single.link <- hclust(dist.food, method='single')
> # Plotting the single linkage dendrogram:
> plclust(food.single.link, ylab="Distance")

Exercise 20 Compare the di↵erent dendrograms obtained using the single, the complete and the average
linkage. Comment.

In order to extract the di↵erent clusters, we use the cutree() function (note that in this type of unsu-
pervised analysis, we need to choose the number of clusters):

> # Cutting the complete-linkage dendrogram to form k=2 clusters here:
> cut.2 <- cutree(food.single.link, k=2)
> cut.2 # printing the "clustering vector"

BB HR BR BS BC CB CC BH LL LS HS PR PS BT VC FB AR AC TC HF MB MC PF SC DC UC

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1

RC

1

33

> # Suppose we preferred a 5-cluster solution:
> cut.5 <- cutree(food.single.link, k=5)
> # Equivalently, in this case:
> cut.5 <- cutree(food.single.link, h=3.5)
> # h specifies the height at which the dendrogram should be cut
> cut.5 # printing the "clustering vector"

BB HR BR BS BC CB CC BH LL LS HS PR PS BT VC FB AR AC TC HF MB MC PF SC DC UC

1 1

RC

1

We can also visualise the clusters via a scatterplot matrix:

> pairs(food, panel=function(x,y) text(x,y,cut.5))

Exercise 21 Comment on the characteristics of each type of cluster.

7.2 Hierarchical clustering

Clustering is a common analysis performed for DNA microarray data. The most often performed clustering
method is hierarchical clustering which typically takes the form of a heatmap. As an example, we will apply
hierarchical clustering to the selection of genes provided in the data golub100.
We will first compute the Pearson correlation between the genes. Note that we must operate on the transpose
of the matrix because the R function cor() operates on the columns.

> genes.cor <- cor(t(golub100), use="pairwise.complete.obs", method="pearson")
> genes.cor[1:10,1:10]

The Pearson correlation coe�cient is a similarity metric, values of which vary from -1 (perfect anticor-
relation) to +1 (perfect correlation), see Lectures Chap.1. Pearson’s correlation can be transformed into a
distance metric by subtracting from 1. The Pearson distance would then vary from 0 (perfect correlation)
to 2 (perfect anti-correlation). Hierarchical clustering of the Pearson distance metric can be achieved by the
hclust() function. We will use the "average" linkage as an agglomeration rule.

> genes.cor.dist <- as.dist(1-genes.cor)
> genes.tree <- hclust(genes.cor.dist, method='average')
> plot(genes.tree, main="Gene clustering by Pearson distance and average linkage", xlab=NULL,
+ cex=0.1, cex.main=1.8)

34

Ly
so

ph
os

ph
ol

ip
as

e
ho

m
ol

og
 (H

U−
K5

) m
RN

A

G
LU

L
G

lu
ta

m
at

e−
am

m
on

ia
 lig

as
e

(g
lu

ta
m

in
e

sy
nt

ha
se

)

IT
G

AX
 In

te
gr

in
, a

lp
ha

 X
 (a

nt
ig

en
 C

D1
1C

 (p
15

0)
, a

lp
ha

 p
ol

yp
ep

tid
e)

FA
H

Fu
m

ar
yla

ce
to

ac
et

at
e

Le
uk

ot
rie

ne
 C

4
sy

nt
ha

se
 (L

TC
4S

) g
en

e

LY
Z

Ly
so

zy
m

e

LY
Z

Ly
so

zy
m

e

Ly
so

zy
m

e
ge

ne
 (E

C
3.

2.
1.

17
)

CS
T3

 C
ys

ta
tin

 C
 (a

m
ylo

id
 a

ng
io

pa
th

y
an

d
ce

re
br

al
 h

em
or

rh
ag

e)

CT
SD

 C
at

he
ps

in
 D

 (l
ys

os
om

al
 a

sp
ar

ty
l p

ro
te

as
e)

FT
L

Fe
rri

tin
, l

ig
ht

 p
ol

yp
ep

tid
e

M
AJ

O
R

HI
ST

O
CO

M
PA

TI
BI

LI
TY

 C
O

M
PL

EX
 E

NH
AN

CE
R−

BI
ND

IN
G

 P
RO

TE
IN

 M
AD

3

AD
M

 A
dr

en
om

ed
ul

lin

IN
TE

RL
EU

KI
N−

8
PR

EC
UR

SO
R

In
te

rle
uk

in
 8

 (I
L8

) g
en

e

IN
DU

CE
D

M
YE

LO
ID

 L
EU

KE
M

IA
 C

EL
L

DI
FF

ER
EN

TI
AT

IO
N

PR
O

TE
IN

 M
CL

1

AT
P6

C
Va

cu
ol

ar
 H

+
AT

Pa
se

 p
ro

to
n

ch
an

ne
l s

ub
un

it

PR
G

1
Pr

ot
eo

gl
yc

an
 1

, s
ec

re
to

ry
 g

ra
nu

le

AR
HG

 R
as

 h
om

ol
og

 g
en

e
fa

m
ily

, m
em

be
r G

 (r
ho

 G
)

CD
33

 C
D3

3
an

tig
en

 (d
iff

er
en

tia
tio

n
an

tig
en

)

Zy
xin

PL
EC

KS
TR

IN

AP
LP

2
Am

ylo
id

 b
et

a
(A

4)
 p

re
cu

rs
or
−l

ike
 p

ro
te

in
 2

PP
G

B
Pr

ot
ec

tiv
e

pr
ot

ei
n

fo
r b

et
a−

ga
la

ct
os

id
as

e
(g

al
ac

to
sia

lid
os

is)

LY
N

V−
ye

s−
1

Ya
m

ag
uc

hi
 s

ar
co

m
a

vir
al

 re
la

te
d

on
co

ge
ne

 h
om

ol
og

M
E4

91
 g

en
e

ex
tra

ct
ed

 fr
om

 H
.s

ap
ie

ns
 g

en
e

fo
r M

e4
91

/C
D6

3
an

tig
en

Ne
ur

om
ed

in
 B

 m
RN

A

G
B

DE
F

=
Ho

m
eo

do
m

ai
n

pr
ot

ei
n

Ho
xA

9
m

RN
A

Ca
ta

la
se

 (E
C

1.
11

.1
.6

) 5
'fla

nk
 a

nd
 e

xo
n

1
m

ap
pi

ng
 to

 c
hr

om
os

om
e

11
, b

an
d

p1
3

(a
nd

 jo
in

ed
 C

DS
)

LE
PR

 L
ep

tin
 re

ce
pt

or

Ep
b7

2
ge

ne
 e

xo
n

1

TC
RA

 T
 c

el
l r

ec
ep

to
r a

lp
ha
−c

ha
in

No
n−

le
ns

 b
et

a
ga

m
m

a−
cr

ys
ta

llin
 lik

e
pr

ot
ei

n
(A

IM
1)

 m
RN

A,
 p

ar
tia

l c
ds

E2
F5

 E
2F

 tr
an

sc
rip

tio
n

fa
ct

or
 5

, p
13

0−
bi

nd
in

g

Te
rm

in
al

 tr
an

sf
er

as
e

m
RN

A

KI
AA

02
12

 g
en

e

LM
P2

 g
en

e
ex

tra
ct

ed
 fr

om
 H

.s
ap

ie
ns

 g
en

es
 T

AP
1,

 T
AP

2,
 L

M
P2

, L
M

P7
 a

nd
 D

O
B

CD
22

 C
D2

2
an

tig
en

G
B

DE
F

=
(la

m
bd

a)
 D

NA
 fo

r i
m

m
un

og
lo

bi
n

lig
ht

 c
ha

in

TC
L1

 g
en

e
(T

 c
el

l le
uk

em
ia

) e
xt

ra
ct

ed
 fr

om
 H

.s
ap

ie
ns

 m
RN

A
fo

r T
ce

ll l
eu

ke
m

ia
/ly

m
ph

om
a

1

CD
24

 s
ig

na
l t

ra
ns

du
ce

r m
RN

A
an

d
3'

 re
gi

on

IG
B

Im
m

un
og

lo
bu

lin
−a

ss
oc

ia
te

d
be

ta
 (B

29
)

M
B−

1
ge

ne

CD
19

 g
en

e

Th
ym

op
oi

et
in

 (T
M

PO
) g

en
e

VI
L2

 V
illi

n
2

(e
zr

in
)

M
ac

m
ar

ck
s

CC
ND

3
Cy

cli
n

D3

Tr
an

sc
rip

tio
na

l a
ct

iva
to

r h
SN

F2
b

HK
R−

T1

IL
7R

 In
te

rle
uk

in
 7

 re
ce

pt
or

Ur
id

in
e

di
ph

os
ph

og
lu

co
se

 p
yr

op
ho

sp
ho

ry
la

se
 m

RN
A

DA
G

K1
 D

ia
cy

lg
lyc

er
ol

 k
in

as
e,

 a
lp

ha
 (8

0k
D)

Ad
en

os
in

e
tri

ph
os

ph
at

as
e,

 c
al

ciu
m

Pr
ot

ei
n

ty
ro

sin
e

kin
as

e
re

la
te

d
m

RN
A

se
qu

en
ce

In
du

cib
le

 p
ro

te
in

 m
RN

A

SP
TA

N1
 S

pe
ct

rin
, a

lp
ha

, n
on
−e

ry
th

ro
cy

tic
 1

 (a
lp

ha
−f

od
rin

)

SO
N

SO
N

DN
A

bi
nd

in
g

pr
ot

ei
n

Tr
an

sla
tio

na
l in

itia
tio

n
fa

ct
or

 2
 b

et
a

su
bu

ni
t (

el
F−

2−
be

ta
) m

RN
A

14
−3
−3

 P
RO

TE
IN

 T
AU

G
LY

CY
LP

EP
TI

DE
 N
−T

ET
RA

DE
CA

NO
YL

TR
AN

SF
ER

AS
E

G
B

DE
F

=
Re

co
m

bi
na

tio
n

ac
itiv

at
in

g
pr

ot
ei

n
(R

AG
2)

 g
en

e,
 la

st
 e

xo
n

G
B

DE
F

=
Im

og
en

 3
8

DN
A−

de
pe

nd
en

t p
ro

te
in

 k
in

as
e

ca
ta

lyt
ic

su
bu

ni
t (

DN
A−

PK
cs

) m
RN

A

Cl
on

e
23

73
3

m
RN

A

T−
CO

M
PL

EX
 P

RO
TE

IN
 1

, G
AM

M
A

SU
BU

NI
T

DH
PS

 D
eo

xy
hy

pu
sin

e
sy

nt
ha

se

M
YL

1
M

yo
sin

 lig
ht

 c
ha

in
 (a

lka
li)

M
CM

3
M

in
ich

ro
m

os
om

e
m

ai
nt

en
an

ce
 d

ef
ici

en
t (

S.
 c

er
ev

isi
ae

) 3

RB
1

Re
tin

ob
la

st
om

a
1

(in
clu

di
ng

 o
st

eo
sa

rc
om

a)

NU
CL

EO
LY

SI
N

TI
A−

1

TC
F1

2
Tr

an
sc

rip
tio

n
fa

ct
or

 1
2

(H
TF

4,
 h

el
ix−

lo
op
−h

el
ix

tra
ns

cr
ip

tio
n

fa
ct

or
s

4)

Pr
ot

ei
n

kin
as

e
AT

R
m

RN
A

PL
AT

EL
ET

−A
CT

IV
AT

IN
G

 F
AC

TO
R

AC
ET

YL
HY

DR
O

LA
SE

 4
5

KD
 S

UB
UN

IT

KI
AA

02
35

 g
en

e,
 p

ar
tia

l c
ds

SP
3

Sp
3

tra
ns

cr
ip

tio
n

fa
ct

or

SR
P9

 S
ig

na
l r

ec
og

ni
tio

n
pa

rti
cle

 9
 k

D
pr

ot
ei

n

Hn
RN

P
F

pr
ot

ei
n

m
RN

A

Pu
ta

tiv
e

en
te

ro
cy

te
 d

iff
er

en
tia

tio
n

pr
om

ot
in

g
fa

ct
or

 m
RN

A,
 p

ar
tia

l c
ds

DC
K

De
ox

yc
yt

id
in

e
kin

as
e

JU
N

V−
ju

n
av

ia
n

sa
rc

om
a

vir
us

 1
7

on
co

ge
ne

 h
om

ol
og

Cl
on

e
23

72
1

m
RN

A
se

qu
en

ce

KI
AA

01
02

 g
en

e

M
ot

or
 p

ro
te

in

Cy
to

pl
as

m
ic

dy
ne

in
 lig

ht
 c

ha
in

 1
 (h

dl
c1

) m
RN

A

AC
AD

M
 A

cy
l−

Co
en

zy
m

e
A

de
hy

dr
og

en
as

e,
 C
−4

 to
 C
−1

2
st

ra
ig

ht
 c

ha
in

RE
TI

NO
BL

AS
TO

M
A

BI
ND

IN
G

 P
RO

TE
IN

 P
48

G
TF

2E
2

G
en

er
al

 tr
an

sc
rip

tio
n

fa
ct

or
 T

FI
IE

 b
et

a
su

bu
ni

t,
34

 k
D

IR
F2

 In
te

rfe
ro

n
re

gu
la

to
ry

 fa
ct

or
 2

M
EF

2A
 g

en
e

(m
yo

cy
te
−s

pe
cif

ic
en

ha
nc

er
 fa

ct
or

 2
A,

 C
9

fo
rm

) e
xt

ra
ct

ed
 fr

om
 H

um
an

 m
yo

cy
te
−s

pe
cif

ic
en

ha
nc

er
 fa

ct
or

 2
A

(M
EF

2A
) g

en
e,

 fi
rs

t c
od

in
g

X−
LI

NK
ED

 H
EL

IC
AS

E
II

FN
TA

 F
ar

ne
sy

ltr
an

sf
er

as
e,

 C
AA

X
bo

x,
 a

lp
ha

PK
D2

 A
ut

os
om

al
 d

om
in

an
t p

ol
yc

ys
tic

 k
id

ne
y

di
se

as
e

ty
pe

 II

Tr
an

sc
rip

tio
na

l a
ct

iva
to

r h
SN

F2
b

C−
m

yb
 g

en
e

ex
tra

ct
ed

 fr
om

 H
um

an
 (c
−m

yb
) g

en
e,

 c
om

pl
et

e
pr

im
ar

y
cd

s,
 a

nd
 fi

ve
 c

om
pl

et
e

al
te

rn
at

ive
ly

sp
lic

ed
 c

ds

TO
P2

B
To

po
iso

m
er

as
e

(D
NA

) I
I b

et
a

(1
80

kD
)

TC
F3

 T
ra

ns
cr

ip
tio

n
fa

ct
or

 3
 (E

2A
 im

m
un

og
lo

bu
lin

 e
nh

an
ce

r b
in

di
ng

 fa
ct

or
s

E1
2/

E4
7)

IE
F

SS
P

95
02

 m
RN

A

G
TB

P
DN

A
G

/T
 m

ism
at

ch
−b

in
di

ng
 p

ro
te

in

RA
BA

PT
IN
−5

 p
ro

te
in

0.
0

0.
5

1.
0

1.
5

Gene clustering by Pearson distance and average linkage

hclust (*, "average")
genes.cor.dist

He
ig

ht

Next we compute the correlations between samples by using the Spearman rank as the metric.

> samples.cor.spearman <- cor(golub100,use="pairwise.complete.obs", method="spearman")
> samples.cor.spearman.dist <- as.dist(1-samples.cor.spearman)
> samples.tree <- hclust(samples.cor.spearman.dist, method='average')
> plot(samples.tree, main="Gene clustering by Spearman distance and average linkage",
+ xlab=NULL, cex.main=1.5)

AM
L

AM
L

AM
L

AM
L

AM
L AM

L
AM

L
AM

L
AM

L
AM

L
AM

L
AL

L
AL

L
AL

L
AL

L
AL

L
AL

L
AL

L AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L AL

L
AL

L
AL

L
AL

L AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Gene clustering by Spearman distance and average linkage

hclust (*, "average")
samples.cor.spearman.dist

H
ei

gh
t

Exercise 22 What other agglomeration methods may be used with the hclust method?
Interpret the sample clustering obtained above.

We can now generate a heatmap for the clustered genes and samples using the heatmap() function. By
default heatmap() automatically performs hierarchical clustering on the rows and columns, using Euclidean

35

distance and complete linkage. We can, however, use the parameters RowV and ColV to impose our own
clustering results. The rows and columns are reordered so as to match the branches of the trees.

We set the colors for the heatmap with the colorRampPalette() function from the package RColorBrewer.
We have selected colours ranging from red to blue. We reverse the selected colours so that red corresponds
to high values and blue corresponds to low values.

> library("RColorBrewer")
> # 1. set the colors for the gene expression data
> col <- colorRampPalette(brewer.pal(10, "RdBu"))(256)
> col <- rev(col) # reverse colors as indicated above
> # 2. set the colors for the samples
> patientcolors <- ifelse(gol.factor =='AML', 'red', 'blue')
> heatmap(golub100,
+ scale="row",
+ col=col,
+ Rowv=as.dendrogram(genes.tree),
+ Colv=as.dendrogram(samples.tree),
+ main="Golub100 data",
+ ColSideColors=patientcolors
+)

AM
L

AM
L

AM
L

AM
L

AM
L

AM
L

AM
L

AM
L

AM
L

AM
L

AM
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

AL
L

Lysophospholipase homolog (HU−K5) mRNAGLUL Glutamate−ammonia ligase (glutamine synthase)ITGAX Integrin, alpha X (antigen CD11C (p150), alpha polypeptide)FAH FumarylacetoacetateLeukotriene C4 synthase (LTC4S) geneLYZ LysozymeLYZ LysozymeLysozyme gene (EC 3.2.1.17)CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)CTSD Cathepsin D (lysosomal aspartyl protease)FTL Ferritin, light polypeptideMAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER−BINDING PROTEIN MAD3ADM AdrenomedullinINTERLEUKIN−8 PRECURSORInterleukin 8 (IL8) geneINDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN MCL1ATP6C Vacuolar H+ ATPase proton channel subunitPRG1 Proteoglycan 1, secretory granuleARHG Ras homolog gene family, member G (rho G)CD33 CD33 antigen (differentiation antigen)ZyxinPLECKSTRINAPLP2 Amyloid beta (A4) precursor−like protein 2PPGB Protective protein for beta−galactosidase (galactosialidosis)LYN V−yes−1 Yamaguchi sarcoma viral related oncogene homologME491 gene extracted from H.sapiens gene for Me491/CD63 antigenNeuromedin B mRNAGB DEF = Homeodomain protein HoxA9 mRNACatalase (EC 1.11.1.6) 5'flank and exon 1 mapping to chromosome 11, band p13 (and joined CDS)LEPR Leptin receptorEpb72 gene exon 1TCRA T cell receptor alpha−chainNon−lens beta gamma−crystallin like protein (AIM1) mRNA, partial cdsE2F5 E2F transcription factor 5, p130−bindingTerminal transferase mRNAKIAA0212 geneLMP2 gene extracted from H.sapiens genes TAP1, TAP2, LMP2, LMP7 and DOBCD22 CD22 antigenGB DEF = (lambda) DNA for immunoglobin light chainTCL1 gene (T cell leukemia) extracted from H.sapiens mRNA for Tcell leukemia/lymphoma 1CD24 signal transducer mRNA and 3' regionIGB Immunoglobulin−associated beta (B29)MB−1 geneCD19 geneThymopoietin (TMPO) geneVIL2 Villin 2 (ezrin)MacmarcksCCND3 Cyclin D3Transcriptional activator hSNF2bHKR−T1IL7R Interleukin 7 receptorUridine diphosphoglucose pyrophosphorylase mRNADAGK1 Diacylglycerol kinase, alpha (80kD)Adenosine triphosphatase, calciumProtein tyrosine kinase related mRNA sequenceInducible protein mRNASPTAN1 Spectrin, alpha, non−erythrocytic 1 (alpha−fodrin)SON SON DNA binding proteinTranslational initiation factor 2 beta subunit (elF−2−beta) mRNA14−3−3 PROTEIN TAUGLYCYLPEPTIDE N−TETRADECANOYLTRANSFERASEGB DEF = Recombination acitivating protein (RAG2) gene, last exonGB DEF = Imogen 38DNA−dependent protein kinase catalytic subunit (DNA−PKcs) mRNAClone 23733 mRNAT−COMPLEX PROTEIN 1, GAMMA SUBUNITDHPS Deoxyhypusine synthaseMYL1 Myosin light chain (alkali)MCM3 Minichromosome maintenance deficient (S. cerevisiae) 3RB1 Retinoblastoma 1 (including osteosarcoma)NUCLEOLYSIN TIA−1TCF12 Transcription factor 12 (HTF4, helix−loop−helix transcription factors 4)Protein kinase ATR mRNAPLATELET−ACTIVATING FACTOR ACETYLHYDROLASE 45 KD SUBUNITKIAA0235 gene, partial cdsSP3 Sp3 transcription factorSRP9 Signal recognition particle 9 kD proteinHnRNP F protein mRNAPutative enterocyte differentiation promoting factor mRNA, partial cdsDCK Deoxycytidine kinaseJUN V−jun avian sarcoma virus 17 oncogene homologClone 23721 mRNA sequenceKIAA0102 geneMotor proteinCytoplasmic dynein light chain 1 (hdlc1) mRNAACADM Acyl−Coenzyme A dehydrogenase, C−4 to C−12 straight chainRETINOBLASTOMA BINDING PROTEIN P48GTF2E2 General transcription factor TFIIE beta subunit, 34 kDIRF2 Interferon regulatory factor 2MEF2A gene (myocyte−specific enhancer factor 2A, C9 form) extracted from Human myocyte−specific enhancer factor 2A (MEF2A) gene, first codingX−LINKED HELICASE IIFNTA Farnesyltransferase, CAAX box, alphaPKD2 Autosomal dominant polycystic kidney disease type IITranscriptional activator hSNF2bC−myb gene extracted from Human (c−myb) gene, complete primary cds, and five complete alternatively spliced cdsTOP2B Topoisomerase (DNA) II beta (180kD)TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)IEF SSP 9502 mRNAGTBP DNA G/T mismatch−binding proteinRABAPTIN−5 protein

Golub100 data

Remark 5 You can also try a simpler command line with less options:

> heatmap(golub100, scale="row", Rowv=as.dendrogram(genes.tree), Colv=as.dendrogram(samples.tree))

Exercise 23 Interpret the heatmap obtained.

36

7.3 Principal Component Analysis

Back onto the food data. We perform a PCA on these data, specifying that the data should be centered
and scaled:

> food.pc <- prcomp(food, center = T, scale. = T)

Let’s have a look at the the eigenvalues of the correlation matrix, they represent the amount of explained
variance on each component:

> food.pc$sdev^2

[1] 2.197777619 1.144204758 0.848574671 0.807842783 0.001600169

And let us compare these values to the scree plot:

> plot(food.pc)

Exercise 24 Choosing the number of components.

1. What do you observe between the eigenvalues and the scree plot?

2. What does the scree plot represent?

3. Where does the “elbow” occur?

We can project the samples (the food) onto the first two principal components:

> plot(food.pc$x[,1], food.pc$x[,2])
> # better is to represent the nutrients with their names:
> plot(food.pc$x[,1], food.pc$x[,2], type = 'n')
> text(food.pc$x[,1], food.pc$x[,2], labels = rownames(food))

We can also color the samples according to the clusters obtained with the dendrogram:

> # Setting up the colors for the 5 clusters on the plot:
> my.color.vector <- rep("green", times=nrow(food))
> my.color.vector[cut.5==2] <- "blue"
> my.color.vector[cut.5==3] <- "red"
> my.color.vector[cut.5==4] <- "orange"
> my.color.vector[cut.5==5] <- "brown"
> plot(food.pc$x[,1], food.pc$x[,2], type = 'n')
> text(food.pc$x[,1], food.pc$x[,2], labels = rownames(food), col = my.color.vector)

And finally we can obtain a biplot:

> biplot(food.pc)

Exercise 25 Sample and biplot plots.

1. The percentage of explained variance is defined as the sum of explained variance on the first chosen com-
ponents divided by the total variance on all possible components. Compute the percentage of explained
variance on the first two components.

2. Interpret the sample plot.

3. Interpret the biplot. What do you observe in common with the sample plot?

37

7.4 K-means

On the food data, let’s perform a K-means clustering with k = 5 clusters:

> # Note that the stability of the result can be improved by increasing the maximum number
> # of iterations and using multiple random starts:
>
> food.k5 <- kmeans(food.std, centers=5, iter.max=100, nstart=25)
> # food.k5 # to run

Exercise 26 K-means clustering.

1. Interpret the output of the K-means cluster with k = 5

2. Rerun the same clustering but with k = 4, what do you observe?

3. For a K-means clustering with k= 4, plot a scatterplot using the function pairs(). Interpret the
clusters and compare with those obtained using the dendrograms.

4. Using the PCA analysis performed above, color the samples with respect to the clusters identified by
K-means with k = 4. What do you observe? How does it compare to the plots obtained above with the
colors associated to the dendogram clustering?

Part of first Assignment, exercise 4 Clustering and visualisation.

1. Gene selection. We are still interested in the list of the 10 candidate genes from Exercise 2 for
the Golub study. Create a new data frame from the golub100 data set so that the data set subset
contains only these genes of interest.

2. Hirerarchical clustering. Output the heatmap, using the 1�correlation distance and the average
linkage. Comment on the clusters.

3. Now, display an heatmap with the Euclidian distance and the Ward linkage. Comment on the
di↵erences with the heatmap obtained above.

In the remaining of the exercise, you will transpose the data and check that the number of rows of
the data frame is 38 (the number of patients).

4. Principal Component Analysis. Apply a PCA on the data frame (use the arguments center and
scale).

(a) Will two components be enough to explain most of the variance in the data? (give some
numerical figures).

(b) Output the sample plot on the first two components. The samples (patients) should appear
on this plot. Comment.

(c) Comment on the biplot obtained. By plotting the boxplots on some chosen genes, explain the
characteristics of the genes of interest with respect to how they are located on the biplot: are
they overexpressed / underexpressed in some biological conditions?

(d) Compare the clustering of the genes observed on the PCA biplot to the K-means clustering
with k = 2.

38

